On a thermoelastic material having a dipolar structure and microtemperatures

被引:8
作者
Marin, Marin [1 ]
Chirila, Adina [1 ]
Codarcea-Munteanu, Lavinia [1 ]
机构
[1] Transilvania Univ Brasov, Dept Math & Comp Sci, Brasov 500091, Romania
关键词
Microtemperatures; Dipolar material; Micro-particles; Semigroup; Continuous dependence; Finite element method; LINEAR-THEORY; CONTINUUM;
D O I
10.1016/j.apm.2019.11.022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study we formulate the mixed initial boundary value problem for a dipolar thermoelastic material whose micro-particles possess microtemperatures. Then this mixed problem is transformed in a Cauchy problem attached to a temporally equation of evolution on a specific Hilbert space, which will be suitably chosen. As such, we will be able to use certain results specific to the theory of the semigroups of contractions in order to obtain the existence and uniqueness of the solution for our problem. The theory of semigroups also facilitates our approach regarding the continuous dependence of the solution upon initial data and loads. Finally, we reduce our model to the isotropic case and perform numerical simulations for the corresponding system of partial differential equations by means of the finite element method. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:827 / 839
页数:13
相关论文
共 29 条
  • [1] Adams R.A., 2003, Sobolev Spaces, V140
  • [2] A thermoelastic problem with diffusion, microtemperatures, and microconcentrations
    Bazarra, Noelia
    Campo, Marco
    Fernandez, Jose R.
    [J]. ACTA MECHANICA, 2019, 230 (01) : 31 - 48
  • [3] On the theory of thermoelasticity with microtemperatures
    Chirita, Stan
    Ciarletta, Michele
    D'Apice, Ciro
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (01) : 349 - 361
  • [4] Rayleigh waves in Cosserat elastic materials
    Chirita, Stan
    Ghiba, Ionel-Dumitrel
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2012, 51 : 117 - 127
  • [5] Dyszlewicz J., 2004, LECT NOTES PURE APPL, V15
  • [6] Eringen A. C., 2012, MICROCONTINUUM FIELD
  • [7] ERINGEN AC, 1966, J MATH MECH, V15, P909
  • [8] Analysis for the strain gradient theory of porous thermoelasticity
    Fernandez, J. R.
    Magana, A.
    Masid, M.
    Quintanilla, R.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 247 - 268
  • [9] A porous thermoelastic problem: An a priori error analysis and computational experiments
    Fernandez, J. R.
    Masid, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 305 : 117 - 135
  • [10] A REEXAMINATION OF THE BASIC POSTULATES OF THERMOMECHANICS
    GREEN, AE
    NAGHDI, PM
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 432 (1885): : 171 - 194