Fully Convolutional Neural Network-Based CSI Limited Feedback for FDD Massive MIMO Systems

被引:16
作者
Fan, Guanghui [1 ]
Sun, Jinlong [1 ]
Gui, Guan [1 ]
Gacanin, Haris [2 ]
Adebisi, Bamidele [3 ]
Ohtsuki, Tomoaki [4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[2] Rhein Westfal TH Aachen, Fac Elect Engn & Informat Technol, D-52074 Aachen, Germany
[3] Manchester Metropolitan Univ, Fac Sci & Engn, Dept Engn, Manchester M15 6BH, Lancs, England
[4] Keio Univ, Dept Informat & Comp Sci, Yokohama, Kanagawa 2238521, Japan
基金
中国国家自然科学基金;
关键词
Fully convolutional neural network; massive MIMO; limited feedback; deep learning; quantization; CHANNEL ESTIMATION; COMPRESSION; ACCESS; MODEL;
D O I
10.1109/TCCN.2021.3119945
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Due to the lack of channel reciprocity in frequency division duplexity (FDD) massive multiple-input multiple-output (MIMO) systems, it is impossible to infer the downlink channel state information (CSI) directly from its reciprocal uplink CSI. Hence, the estimated downlink CSI needs to be continuously fed back to the base station (BS) from the user equipment (UE), consuming valuable bandwidth resources. This is exacerbated, in massive MIMO, with the increase of the antennas at the BS. This paper propose a fully convolutional neural network (FullyConv) to compress and decompress the downlink CSI. FullyConv will improve the reconstruction accuracy of downlink CSI and reduce the training parameters and computational resources. Besides, we add a quantization module in the encoder and a dequantization module in the decoder of the FullyConv to simulate a real feedback scenario. Experimental results demonstrate that the proposed FullyConv is better than the baseline on reconstruction performance and reduction of the storage and computational overhead. Furthermore, the FullyConv added quantization and dequantization modules is robust to quantization error in real feedback scenarios.
引用
收藏
页码:672 / 682
页数:11
相关论文
共 50 条
[41]   CRissNet: An Efficient and Lightweight Network for CSI Feedback in Massive MIMO Systems [J].
Wang, Binghui ;
Teng, Yinglei ;
Zhao, Yangliu ;
Yu, Yaxin ;
Lau, Vincent K. N. .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2025, 11 (03) :1452-1465
[42]   Two-Stage Adaptive and Compressed CSI Feedback for FDD Massive MIMO [J].
Huang, Guan ;
Liu, An ;
Zhao, Min-Jian .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (09) :9602-9606
[43]   DL CSI Acquisition and Feedback in FDD Massive MIMO via Path Aligning [J].
Luo, Xiliang ;
Zhang, Xiaoyu ;
Cai, Penghao ;
Shen, Cong ;
Hu, Die ;
Qian, Hua .
2017 NINTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2017), 2017, :349-354
[44]   HCC-Net: Holistic Cross-Joint Convolutional Network for CSI Feedback in Massive MIMO Systems [J].
Zhao, Xiang ;
Wang, Chao ;
Mei, Lin ;
Xu, Xu ;
Peng, Tong .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (10) :2937-2941
[45]   Deep Learning Based CSI Compression and Quantization With High Compression Ratios in FDD Massive MIMO Systems [J].
Zhang, Yangyang ;
Zhang, Xichang ;
Liu, Yi .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (10) :2101-2105
[46]   Learning-Based Integrated CSI Feedback and Localization in Massive MIMO [J].
Guo, Jiajia ;
Lv, Yan ;
Wen, Chao-Kai ;
Li, Xiao ;
Jin, Shi .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) :14988-15001
[47]   AI-enhanced Codebook-based CSI Feedback in FDD Massive MIMO [J].
Guo, Jiajia ;
Wen, Chao-Kai ;
Chen, Muhan ;
Jin, Shi .
2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
[48]   Machine Learning-Based CSI Feedback With Variable Length in FDD Massive MIMO [J].
Nerini, Matteo ;
Rizzello, Valentina ;
Joham, Michael ;
Utschick, Wolfgang ;
Clerckx, Bruno .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (05) :2886-2900
[49]   Probability Distribution-Based CSI Feedback for Massive MIMO Systems [J].
Jang, Youngrok ;
Kim, Taehyoung ;
Choi, Sooyong .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) :6833-6838
[50]   A Covariance-Based Hybrid Channel Feedback in FDD Massive MIMO Systems [J].
Qiu, Shuang ;
Gesbert, David ;
Chen, Da ;
Jiang, Tao .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (12) :8365-8377