Context-Aware Network for Semantic Segmentation Toward Large-Scale Point Clouds in Urban Environments

被引:37
|
作者
Liu, Chun [1 ]
Zeng, Doudou [2 ]
Akbar, Akram [1 ]
Wu, Hangbin [1 ]
Jia, Shoujun [1 ]
Xu, Zeran [1 ]
Yue, Han [1 ]
机构
[1] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[2] China Railway First Survey & Design Inst Grp Co L, Xian 710043, Peoples R China
基金
中国国家自然科学基金;
关键词
Point cloud compression; Semantics; Feature extraction; Three-dimensional displays; Image segmentation; Deep learning; Context modeling; Attention mechanism; global context; large-scale point clouds; point cloud dataset; semantic segmentation; NEURAL-NETWORK; LIDAR DATA; CLASSIFICATION;
D O I
10.1109/TGRS.2022.3182776
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Point cloud semantic segmentation in urban scenes plays a vital role in intelligent city modeling, autonomous driving, and urban planning. Point cloud semantic segmentation based on deep learning methods has achieved significant improvement. However, it is also challenging for accurate semantic segmentation in large scenes due to complex elements, variety of scene classes, occlusions, and noise. Besides, most methods need to split the original point cloud into multiple blocks before processing and cannot directly deal with the point clouds on a large scale. We propose a novel context-aware network (CAN) that can directly deal with large-scale point clouds. In the proposed network, a local feature aggregation module (LFAM) is designed to preserve rich geometric details in the raw point cloud and reduce the information loss during feature extraction. Then, in combination with a global context aggregation module (GCAM), capture long-range dependencies to enhance the network feature representation and suppress the noise. Finally, a context-aware upsampling module (CAUM) is embedded into the proposed network to capture the global perception from a broad perspective. The ensemble of low-level and high-level features facilitates the effectiveness and efficiency of 3-D point cloud feature refinement. Comprehensive experiments were carried out on three large-scale point cloud datasets in both outdoor and indoor environments to evaluate the performance of the proposed network. The results show that the proposed method outperformed the state-of-the-art representative semantic segmentation networks, and the overall accuracy (OA) of Tongji-3D, Semantic3D, and Stanford large-scale 3-D indoor spaces (S3DIS) is 96.01%, 95.0%, and 88.55%, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A deep learning network for semantic labeling of large-scale urban point clouds
    Yang B.
    Han X.
    Dong Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (08): : 1059 - 1067
  • [2] Semantic segmentation of large-scale point clouds with neighborhood uncertainty
    Bao, Yong
    Wen, Haibiao
    Zhang, Baoqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (21) : 60949 - 60964
  • [3] CNet: Context-Aware Network for Semantic Segmentation
    Cheng, Rongliang
    Zhang, Junge
    Yang, Peipei
    Liu, Kangwei
    Zhang, Shujun
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 67 - 72
  • [4] CSFNet: Cross-Modal Semantic Focus Network for Semantic Segmentation of Large-Scale Point Clouds
    Luo, Yang
    Han, Ting
    Liu, Yujun
    Su, Jinhe
    Chen, Yiping
    Li, Jinyuan
    Wu, Yundong
    Cai, Guorong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [5] SADNet: Space-aware DeepLab network for Urban-Scale point clouds semantic segmentation
    Zhan, Wenxiao
    Chen, Jing
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 129
  • [6] GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds
    Zhang, Min
    Kadam, Pranav
    Liu, Shan
    Kuo, C. -C. Jay
    PATTERN RECOGNITION LETTERS, 2022, 164 : 9 - 15
  • [7] Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling
    Hu, Qingyong
    Yang, Bo
    Xie, Linhai
    Rosa, Stefano
    Guo, Yulan
    Wang, Zhihua
    Trigoni, Niki
    Markham, Andrew
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8338 - 8354
  • [8] LessNet: Lightweight and efficient semantic segmentation for large-scale point clouds
    Feng, Guoqiang
    Li, Weilong
    Zhao, Xiaolin
    Yang, Xuemeng
    Kong, Xin
    Huang, TianXin
    Cui, Jinhao
    IET CYBER-SYSTEMS AND ROBOTICS, 2022, 4 (02) : 107 - 115
  • [9] Continuous Mapping Convolution for Large-Scale Point Clouds Semantic Segmentation
    Yan, Kunping
    Hu, Qingyong
    Wang, Hanyun
    Huang, Xiaohong
    Li, Li
    Ji, Song
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] BushNet: Effective semantic segmentation of bush in large-scale point clouds
    Wei, Hejun
    Xu, Enyong
    Zhang, Jinlai
    Meng, Yanmei
    Wei, Jin
    Dong, Zhen
    Li, Zhengqiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 193