Plant-Inspired Layer-by-Layer Self-Assembly of Super-Hydrophobic Coating for Oil Spill Cleanup

被引:7
|
作者
Ding, Liping [1 ]
Wang, Yanqing [1 ,2 ]
Xiong, Jinxin [1 ]
Lu, Huiying [1 ]
Zeng, Mingjian [1 ]
Zhu, Peng [1 ]
Ma, Haiyan [1 ]
机构
[1] Nantong Univ, Sch Chem & Chem Engn, Nantong 226007, Peoples R China
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore
基金
中国国家自然科学基金;
关键词
plant-inspired chemistry; self-assembly strategy; surface modification; super-hydrophobicity; OIL/WATER SEPARATION; MELAMINE SPONGE; GRAPHENE; WETTABILITY; PARTICLES;
D O I
10.3390/polym11122047
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A versatile, facile, energy-saving, low-cost and plant-inspired self-assembly strategy was used to prepare super-hydrophobic coating in this study. Concretely, an appealing super-hydrophobicity surface was obtained by designing a molecular building block phytic acid (PA)-Fe (III) complex to anchor the substrate and hydrophobic thiol groups (HT). The facile and green modification method can be applied to variety of substrates. The as-prepared PA-Fe (III)-HT coated melamine composite sponge possesses both super-hydrophobic and superlipophilicity property. Moreover, it displays superior efficiency to separate the oil-water mixture and splendid oil spill cleanup.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Phospholipid-based multifunctional coating via layer-by-layer self-assembly for biomedical applications
    Li, Peichuang
    Li, Xiaojing
    Cai, Wanhao
    Chen, Huiqing
    Chen, Hang
    Wang, Rui
    Zhao, Yuancong
    Wang, Jin
    Huang, Nan
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 116
  • [22] Layer-by-layer self-assembly and electrochemistry: Applications in biosensing and bioelectronics
    Iost, Rodrigo M.
    Crespilho, Frank N.
    BIOSENSORS & BIOELECTRONICS, 2012, 31 (01): : 1 - 10
  • [23] Layer-by-Layer Self-Assembly Immobilization of Catalases on Wool Fabrics
    Liu, J.
    Wang, Q.
    Fan, X. R.
    Sun, X. J.
    Huang, P. H.
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2013, 169 (07) : 2212 - 2222
  • [24] Layer-by-Layer Self-Assembly under High Gravity Field
    Ma, Lanxin
    Cheng, Mengjiao
    Jia, Guijin
    Wang, Youqing
    An, Qi
    Zeng, Xiaofei
    Shen, Zhigang
    Zhang, Yajun
    Shi, Feng
    LANGMUIR, 2012, 28 (25) : 9849 - 9856
  • [25] Fabrication of functional nanoparticles by layer-by-layer self-assembly method
    Kim, Jin-Ho
    Hwang, Jong-Hee
    Lim, Tae-Young
    Kim, Sae-Hoon
    JOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY, 2009, 19 (06): : 305 - 310
  • [26] Layer-by-layer self-assembly modification for pulp fiber.
    Zheng, ZQ
    Lvov, YM
    Shutava, T
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U296 - U296
  • [27] Tubular Titania nanostructures via layer-by-layer self-assembly
    Yu, Aimin
    Lu, Gao Qing Max
    Drennan, John
    Gentle, Ian R.
    ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (14) : 2600 - 2605
  • [28] Molecular dynamics simulations of electrostatic layer-by-layer self-assembly
    Panchagnula, V
    Jeon, J
    Dobrynin, AV
    PHYSICAL REVIEW LETTERS, 2004, 93 (03) : 037801 - 1
  • [29] Nanocoating for biomolecule delivery using layer-by-layer self-assembly
    Keeney, M.
    Jiang, X. Y.
    Yamane, M.
    Lee, M.
    Goodman, S.
    Yang, F.
    JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (45) : 8757 - 8770
  • [30] Layer-by-layer self-assembly of multifunctional enzymatic UF membranes
    Yurekli, Yilmaz
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (22)