Geometric and Numerical Methods in the Contrast Imaging Problem in Nuclear Magnetic Resonance

被引:15
作者
Bonnard, Bernard [1 ,2 ]
Claeys, Mathieu [3 ,4 ]
Cots, Olivier [2 ]
Martinon, Pierre [5 ,6 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, F-21078 Dijon, France
[2] INRIA Sophia Antipolis Mediterranee, F-06902 Sophia Antipolis, France
[3] CNRS, LAAS, F-31077 Toulouse, France
[4] Univ Toulouse, UPS, INSA, INP,ISAE,UT1,UTM,LAAS, F-31077 Toulouse, France
[5] Inria, F-91128 Palaiseau, France
[6] Ecole Polytech, F-91128 Palaiseau, France
关键词
Geometric optimal control; Contrast imaging in NMR; Direct method; Shooting and continuation techniques; Moment optimization; ALGORITHM;
D O I
10.1007/s10440-014-9947-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the contrast imaging problem in nuclear magnetic resonance is modeled as a Mayer problem in optimal control. The optimal solution can be found as an extremal, solution of the Maximum Principle and analyzed with the techniques of geometric control. This leads to a numerical investigation based on so-called indirect methods using the HamPath software. The results are then compared with a direct method implemented within the Bocop toolbox. Finally lmi techniques are used to estimate a global optimum.
引用
收藏
页码:5 / 45
页数:41
相关论文
共 37 条
[1]  
Allgower EL, 2003, SIAM CLASSICS APPL M, V45
[2]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[3]  
[Anonymous], 1999, Numerical Optimization.
[4]  
[Anonymous], 2011, OPTIMAL CONTROL ODES
[5]   A Shooting Algorithm for Optimal Control Problems with Singular Arcs [J].
Aronna, M. Soledad ;
Bonnans, J. Frederic ;
Martinon, Pierre .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (02) :419-459
[6]  
Betts John T, 2001, ADV DESIGN CONTROL
[7]  
Bonnans F., 2012, RR8053 INRIA
[8]  
Bonnard B, 2005, DISCRETE CONT DYN-B, V5, P929
[9]  
Bonnard B., 2003, MATH APPLIC, V40
[10]  
Bonnard B., 2012, MATH MOD METH APPL S, V24, P187