Accelerating t-SNE using Tree-Based Algorithms

被引:0
|
作者
van der Maaten, Laurens [1 ]
机构
[1] Delft Univ Technol, Pattern Recognit & Bioinformat Grp, NL-2628 CD Delft, Netherlands
关键词
embedding; multidimensional scaling; t-SNE; space-partitioning trees; Barnes-Hut algorithm; dual-tree algorithm; NONLINEAR DIMENSIONALITY REDUCTION; ERROR ESTIMATE; OBJECT; CODE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper investigates the acceleration of t-SNE an embedding technique that is commonly used for the visualization of high-dimensional data in scatter plots using two treebased algorithms. In particular, the paper develops variants of the Barnes-Hut algorithm and of the dual-tree algorithm that approximate the gradient used for learning t-SNE embeddings in 0(N log N). Our experiments show that the resulting algorithms substantially accelerate t-SNE, and that they make it possible to learn embeddings of data sets with millions of objects. Somewhat counterintuitively, the Barnes-Hut variant of t-SNE appears to outperform the dual-tree variant.
引用
收藏
页码:3221 / 3245
页数:25
相关论文
共 50 条
  • [21] Phonetic Segmentation of Speech using STEP and t-SNE
    Stan, Adriana
    Valentini-Botinhao, Cassia
    Giurgiu, Mircea
    King, Simon
    2015 INTERNATIONAL CONFERENCE ON SPEECH TECHNOLOGY AND HUMAN-COMPUTER DIALOGUE (SPED), 2015,
  • [22] Generic Process Visualization Using Parametric t-SNE
    Zhu, Wenbo
    Webb, Zachary
    Han, Xianyao
    Mao, Kaitian
    Sun, Wei
    Romagnoli, Jose
    IFAC PAPERSONLINE, 2018, 51 (18): : 803 - 808
  • [23] Decomposition and Classification of Stellar Spectra Based on t-SNE
    Jiang Bin
    Zhao Zi-liang
    Wang Shu-ting
    Wei Ji-yu
    Qu Mei-xia
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40 (09) : 2913 - 2917
  • [24] ENS-t-SNE: Embedding Neighborhoods Simultaneously t-SNE
    Miller, Jacob
    Huroyan, Vahan
    Navarrete, Raymundo
    Hossain, Md Iqbal
    Kobourov, Stephen
    2024 IEEE 17TH PACIFIC VISUALIZATION CONFERENCE, PACIFICVIS, 2024, : 222 - 231
  • [25] Unsupervised Clustering of Hyperspectral Paper Data Using t-SNE
    Melit Devassy, Binu
    George, Sony
    Nussbaum, Peter
    JOURNAL OF IMAGING, 2020, 6 (05)
  • [26] Confidence estimation for t-SNE embeddings using random forest
    Yigin, Busra Ozgode
    Saygili, Gorkem
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (12) : 3981 - 3992
  • [27] Fast Similarity Computation for t-SNE
    Fujiwara, Yasuhiro
    Ida, Yasutoshi
    Kanai, Sekitoshi
    Kumagai, Atsutoshi
    Ueda, Naonori
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 1691 - 1702
  • [28] Projected t-SNE for batch correction
    Aliverti, Emanuele
    Tilson, Jeffrey L.
    Filer, Dayne L.
    Babcock, Benjamin
    Colaneri, Alejandro
    Ocasio, Jennifer
    Gershon, Timothy R.
    Wilhelmsen, Kirk C.
    Dunson, David B.
    BIOINFORMATICS, 2020, 36 (11) : 3522 - 3527
  • [29] A t-SNE Based Classification Approach to Compositional Microbiome Data
    Xu, Xueli
    Xie, Zhongming
    Yang, Zhenyu
    Li, Dongfang
    Xu, Ximing
    FRONTIERS IN GENETICS, 2020, 11
  • [30] Using Global t-SNE to Preserve Intercluster Data Structure
    Zhou, Yuansheng
    Sharpee, Tatyana O.
    NEURAL COMPUTATION, 2022, 34 (08) : 1637 - 1651