Accelerating t-SNE using Tree-Based Algorithms

被引:0
作者
van der Maaten, Laurens [1 ]
机构
[1] Delft Univ Technol, Pattern Recognit & Bioinformat Grp, NL-2628 CD Delft, Netherlands
关键词
embedding; multidimensional scaling; t-SNE; space-partitioning trees; Barnes-Hut algorithm; dual-tree algorithm; NONLINEAR DIMENSIONALITY REDUCTION; ERROR ESTIMATE; OBJECT; CODE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper investigates the acceleration of t-SNE an embedding technique that is commonly used for the visualization of high-dimensional data in scatter plots using two treebased algorithms. In particular, the paper develops variants of the Barnes-Hut algorithm and of the dual-tree algorithm that approximate the gradient used for learning t-SNE embeddings in 0(N log N). Our experiments show that the resulting algorithms substantially accelerate t-SNE, and that they make it possible to learn embeddings of data sets with millions of objects. Somewhat counterintuitively, the Barnes-Hut variant of t-SNE appears to outperform the dual-tree variant.
引用
收藏
页码:3221 / 3245
页数:25
相关论文
共 67 条