Accelerating t-SNE using Tree-Based Algorithms

被引:0
作者
van der Maaten, Laurens [1 ]
机构
[1] Delft Univ Technol, Pattern Recognit & Bioinformat Grp, NL-2628 CD Delft, Netherlands
关键词
embedding; multidimensional scaling; t-SNE; space-partitioning trees; Barnes-Hut algorithm; dual-tree algorithm; NONLINEAR DIMENSIONALITY REDUCTION; ERROR ESTIMATE; OBJECT; CODE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper investigates the acceleration of t-SNE an embedding technique that is commonly used for the visualization of high-dimensional data in scatter plots using two treebased algorithms. In particular, the paper develops variants of the Barnes-Hut algorithm and of the dual-tree algorithm that approximate the gradient used for learning t-SNE embeddings in 0(N log N). Our experiments show that the resulting algorithms substantially accelerate t-SNE, and that they make it possible to learn embeddings of data sets with millions of objects. Somewhat counterintuitively, the Barnes-Hut variant of t-SNE appears to outperform the dual-tree variant.
引用
收藏
页码:3221 / 3245
页数:25
相关论文
共 67 条
  • [31] Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering
    Ji, Shuiwang
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [32] Keim D.A., 2010, MASTERING INFORM SOL
  • [33] Krizhevsky A., 2009, Learning Multiple Layers of Features from Tiny Images, DOI DOI 10.1145/3079856.3080246
  • [34] Alignment-free Visualization of Metagenomic Data by Nonlinear Dimension Reduction
    Laczny, Cedric C.
    Pinel, Nicolas
    Vlassis, Nikos
    Wilmes, Paul
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [35] Lang D., 2005, Technical report TR2005-03
  • [36] Lawrence Neil., 2011, Proc. 14th Intn'l Conf. Artificial Intelligence and Statistics (AISTATS), P51
  • [37] LeCun Y, 2004, PROC CVPR IEEE, P97
  • [38] Liu T., 2004, NEURAL INF PROC SYST, P825
  • [39] Mahdaviani M, 2005, IEEE INT CONF ROBOT, P138
  • [40] Muja M, 2009, VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, P331