Ni-Doped MoS2 as an Efficient Catalyst for Electrochemical Hydrogen Evolution in Alkine Media

被引:38
作者
Kong, Xiangbin [1 ,2 ,3 ,4 ]
Wang, Ning [1 ,2 ,3 ,4 ]
Zhang, Qixing [1 ,2 ,3 ,4 ]
Liang, Junhui [1 ,2 ,3 ,4 ]
Wang, Manjing [1 ,2 ,3 ,4 ]
Wei, Changchun [1 ,2 ,3 ,4 ]
Chen, Xinliang [1 ,2 ,3 ,4 ]
Zhao, Ying [1 ,2 ,3 ,4 ]
Zhang, Xiaodan [1 ,2 ,3 ,4 ]
机构
[1] Nankai Univ, Inst Photoelect Thin Film Devices & Technol, Tianjin 300071, Peoples R China
[2] Key Lab Photoelect Thin Film Devices & Technol Ti, Tianjin 300071, Peoples R China
[3] Minist Educ, Key Lab Opt Informat Sci & Technol, Tianjin 300071, Peoples R China
[4] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
来源
CHEMISTRYSELECT | 2018年 / 3卷 / 32期
基金
中国国家自然科学基金;
关键词
HER; electrochemical hydrogen evolution; MoS2; catalyst; alkine-media; ACTIVE EDGE SITES; ULTRATHIN NANOSHEETS; ELECTROCATALYSTS; ARRAY; NANOWIRES; ELECTRODE; HYBRID;
D O I
10.1002/slct.201802100
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen generation from overall water splitting in alkine media is a convenient and promising technology for solving global energy dilemma. As a key half reaction, the hydrogen evolution reaction (HER) involves a complicated electrochemical process, and preparing high-performance catalysts based on earth-abundant elements is a matter of urgency. Molybdenum disulfide (MoS2) is a robust electrocatalyst that has been widely studied in acidic HER, but the low-concentration of active sites and slow-reaction rate limit its application in alkine electrolytes. To solve the above issues, we successfully fabricated a three-dimensional Ni doped MoS2 (MoS2:Ni) catalyst by a simple two-step approach for excellent catalytic performance. The X-ray photoelectron spectroscopy (XPS) results suggested that the nickel acted as new active sites, and the electronic interactions between nickel and molybdenum led to the redistribution of charge to promote the involved process. Electrochemical impedance spectroscopy (EIS) results indicated that MoS2:Ni performed a faster charge-transfer. In addition, the developed catalyst showed a lower overpotential and 91 mV decrease compared to those of pure MoS2 at 10 mA/cm(2) in 1.0 M KOH. The study reported here may inspire the synthesis of advanced nanomaterials and provide concepts for improving the HER capabilities of MoS2-based catalysts.
引用
收藏
页码:9493 / 9498
页数:6
相关论文
共 34 条
[1]   Controlled synthesis of Mo-doped Ni3S2 nano-rods: an efficient and stable electro-catalyst for water splitting [J].
Cui, Zheng ;
Ge, Yuancai ;
Chu, Hang ;
Baines, Robert ;
Dong, Pei ;
Tang, Jianhua ;
Yang, Yang ;
Ajayan, Pulickel M. ;
Ye, Mingxin ;
Shen, Jianfeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (04) :1595-1602
[2]   Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production [J].
Deng, Jiao ;
Li, Haobo ;
Wang, Suheng ;
Ding, Ding ;
Chen, Mingshu ;
Liu, Chuan ;
Tian, Zhongqun ;
Novoselov, K. S. ;
Ma, Chao ;
Deng, Dehui ;
Bao, Xinhe .
NATURE COMMUNICATIONS, 2017, 8
[3]   Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis [J].
Gong, Ming ;
Zhou, Wu ;
Tsai, Mon-Che ;
Zhou, Jigang ;
Guan, Mingyun ;
Lin, Meng-Chang ;
Zhang, Bo ;
Hu, Yongfeng ;
Wang, Di-Yan ;
Yang, Jiang ;
Pennycook, Stephen J. ;
Hwang, Bing-Joe ;
Dai, Hongjie .
NATURE COMMUNICATIONS, 2014, 5
[4]   Assembly of protonated mesoporous carbon nitrides with co-catalytic [Mo3S13]2- clusters for photocatalytic hydrogen production [J].
Guo, Fangsong ;
Hou, Yidong ;
Asiri, A. M. ;
Wang, Xinchen .
CHEMICAL COMMUNICATIONS, 2017, 53 (99) :13221-13224
[5]   Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction [J].
Hai, Xiao ;
Zhou, Wei ;
Wang, Shengyao ;
Pang, Hong ;
Chang, Kun ;
Ichihara, Fumihiko ;
Ye, Jinhua .
NANO ENERGY, 2017, 39 :409-417
[6]   Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts [J].
Jaramillo, Thomas F. ;
Jorgensen, Kristina P. ;
Bonde, Jacob ;
Nielsen, Jane H. ;
Horch, Sebastian ;
Chorkendorff, Ib .
SCIENCE, 2007, 317 (5834) :100-102
[7]   P-Doped Ag Nanoparticles Embedded in N-Doped Carbon Nanoflake: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction [J].
Ji, Xuqiang ;
Liu, Bingping ;
Ren, Xiang ;
Shi, Xifeng ;
Asiri, Abdullah M. ;
Sun, Xuping .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (04) :4499-4503
[8]   A Heterostructure Coupling of Exfoliated Ni-Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting [J].
Jia, Yi ;
Zhang, Longzhou ;
Gao, Guoping ;
Chen, Hua ;
Wang, Bei ;
Zhou, Jizhi ;
Soo, Mun Teng ;
Hong, Min ;
Yan, Xuecheng ;
Qian, Guangren ;
Zou, Jin ;
Du, Aijun ;
Yao, Xiangdong .
ADVANCED MATERIALS, 2017, 29 (17)
[9]   Synthesis of Ni9S8/MoS2 heterocatalyst for Enhanced Hydrogen Evolution Reaction [J].
Khalil, Adnan ;
Liu, Qin ;
Muhammad, Zahir ;
Habib, Muhammad ;
Khan, Rashid ;
He, Qun ;
Fang, Qi ;
Masood, Hafiz Tariq ;
Rehman, Zia Ur ;
Xiang, Ting ;
Wu, Chuan Qiang ;
Song, Li .
LANGMUIR, 2017, 33 (21) :5148-5153
[10]   Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions [J].
Khan, Majid ;
Bin Yousaf, Ammar ;
Chen, Mingming ;
Wei, Chengsha ;
Wu, Xibo ;
Huang, Ningdong ;
Qi, Zemin ;
Li, Liangbin .
NANO RESEARCH, 2016, 9 (03) :837-848