INVERSE PROBLEMS FOR THE HEAT EQUATION WITH MEMORY

被引:12
作者
Avdonin, Sergei A. [1 ]
Ivanov, Sergei A. [2 ]
Wang, Jun-Min [3 ]
机构
[1] Univ Alaska Fairbanks, Fairbanks, AK 99775 USA
[2] Russian Acad Sci, Mendeleev Line 1, St Petersburg, Russia
[3] Beijing Inst Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Gurtin-Pipkin equation; inverse problem; Borg-Marchenko theorem; IDENTIFICATION;
D O I
10.3934/ipi.2019002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study inverse boundary problems for one dimensional linear integro-differential equation of the Gurtin-Pipkin type with the Dirichlet-to-Neumann map as the inverse data. Under natural conditions on the kernel of the integral operator, we give the explicit formula for the solution of the problem with the observation on the semiaxis t > 0. For the observation on finite time interval, we prove the uniqueness result, which is similar to the local Borg-Marchenko theorem for the Schrodinger equation.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 19 条
[1]   BOUNDARY CONTROL AND A MATRIX INVERSE PROBLEM FOR THE EQUATION U(TT)-U(XX)+V(X)U=O [J].
AVDONIN, SA ;
BELISHEV, MI ;
IVANOV, SA .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 72 (02) :287-310
[2]   A linear algorithm for the identification of a weakly singular relaxation kernel using two boundary measurements [J].
Avdonin, Sergei ;
Pandolfi, Luciano .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2018, 26 (02) :299-310
[3]   The boundary control approach to inverse spectral theory [J].
Avdonin, Sergei ;
Mikhaylov, Victor .
INVERSE PROBLEMS, 2010, 26 (04)
[4]   A proof of the local Borg-Marchenko theorem [J].
Bennewitz, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (01) :131-132
[5]  
Blagovescenskii A. S., 1971, T MAT I STEKLOV, V115, P28
[6]   Two methods for the inverse problem of memory reconstruction [J].
Bukhgeim, AL ;
Kalinina, NI ;
Kardakov, VB .
SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (04) :634-642
[7]   SPECTRA OF THE GURTIN-PIPKIN TYPE EQUATIONS [J].
Eremenko, Alexandre ;
Ivanov, Sergei .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (05) :2296-2306
[8]   A GENERAL THEORY OF HEAT CONDUCTION WITH FINITE WAVE SPEEDS [J].
GURTIN, ME ;
PIPKIN, AC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1968, 31 (02) :113-&
[9]  
Ivanov S., ARXIV13121580
[10]  
Ivanov S., REGULARITY GURTIN PI