Boundedness of solutions for a quasilinear chemotaxis-haptotaxis model

被引:1
作者
Ren, Guoqiang [1 ,2 ]
Liu, Bin [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
关键词
Chemotaxis-haptotaxis; Boundedness; Global existence; KELLER-SEGEL SYSTEM; LARGE TIME BEHAVIOR; GLOBAL EXISTENCE; BLOW-UP; NONLINEAR DIFFUSION; ROLES;
D O I
10.14492/hokmj/2018-944
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with the chemotaxis-haptotaxis system with logistic source under homogeneous Neumann boundary conditions in a bounded convex domain with smooth boundary. Under appropriate regularity assumptions on the initial data, by L-P-estimate techniques, we show that the system possesses at least one global and bounded weak solution. Our results generalize and improve previous results.
引用
收藏
页码:207 / 245
页数:39
相关论文
共 45 条
[1]   Boundedness in a three-dimensional chemotaxis-haptotaxis model [J].
Cao, Xinru .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01)
[2]  
Chaplain MAJ, 2006, NETW HETEROG MEDIA, V1, P399
[3]   Global boundedness in a fully parabolic quasilinear chemotaxis system with singular sensitivity [J].
Ding, Mengyao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) :1260-1270
[4]   STABILIZATION IN A CHEMOTAXIS MODEL FOR TUMOR INVASION [J].
Fujie, Kentarou ;
Ito, Akio ;
Winkler, Michael ;
Yokota, Tomomi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (01) :151-169
[5]   Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity [J].
Fujie, Kentarou ;
Winkler, Michael ;
Yokota, Tomomi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (06) :1212-1224
[6]   Boundedness in a fully parabolic chemotaxis system with singular sensitivity [J].
Fujie, Kentarou .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) :675-684
[7]   Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity [J].
Fujie, Kentarou ;
Winkler, Michael ;
Yokota, Tomomi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 109 :56-71
[8]  
Gilbarg D., 2015, ELLIPTIC PARTIAL DIF
[9]  
Henry D., 1989, GEOMETRIC THEORY SEM, DOI DOI 10.1007/BFB0089647
[10]  
Herrero M., 1997, ANN SCUOLA NORM-SCI, V24, P633