Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps

被引:7
作者
Tong, James [1 ,2 ]
Mahapatra, Dwarikanath [3 ]
Bonnington, Paul [2 ]
Drummond, Tom [2 ]
Ge, Zongyuan [1 ,2 ]
机构
[1] Monash Univ, Melbourne, Vic, Australia
[2] Airdoc Res, Melbourne, Vic, Australia
[3] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
来源
DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, AND DISTRIBUTED AND COLLABORATIVE LEARNING, DART 2020, DCL 2020 | 2020年 / 12444卷
关键词
Fine grained segmentation; Registration; Histopathology; SEGMENTATION; MODEL;
D O I
10.1007/978-3-030-60548-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image registration is an important part of many clinical workflows and inclusion of segmentation information of structures of interest improves registration performance. We propose to integrate segmentation information in a registration framework using fine grained feature maps obtained in a self supervised manner. Self supervised feature maps enables use of segmentation information despite the unavailability of manual segmentations. Experimental results show our approach effectively replaces manual segmentation maps and demonstrate the possibility of obtaining state of the art registration performance in real world cases where manual segmentation maps are unavailable.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 31 条
[1]  
ANHIR, Automatic non-rigid histological image registration challenge
[2]   Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction [J].
Bai, Wenjia ;
Chen, Chen ;
Tarroni, Giacomo ;
Duan, Jinming ;
Guitton, Florian ;
Petersen, Steffen E. ;
Guo, Yike ;
Matthews, Paul M. ;
Rueckert, Daniel .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :541-549
[3]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[4]   An Unsupervised Learning Model for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian V. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9252-9260
[5]  
Borovec J, 2018, IEEE IMAGE PROC, P3368, DOI 10.1109/ICIP.2018.8451040
[6]   End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network [J].
de Vos, Bob D. ;
Berendsen, Floris F. ;
Viergever, Max A. ;
Staring, Marius ;
Isgum, Ivana .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2017, 10553 :204-212
[7]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[8]   Dual-Stream Pyramid Registration Network [J].
Hu, Xiaojun ;
Kang, Miao ;
Huang, Weilin ;
Scott, Matthew R. ;
Wiest, Roland ;
Reyes, Mauricio .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :382-390
[9]   Conditional Segmentation in Lieu of Image Registration [J].
Hu, Yipeng ;
Gibson, Eli ;
Barratt, Dean C. ;
Emberton, Mark ;
Noble, J. Alison ;
Vercauteren, Tom .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :401-409
[10]  
Jaderberg M, 2015, ADV NEUR IN, V28