Lanthanide-Based T2ex and CEST Complexes Provide Insights into the Design of pH Sensitive MRI Agents

被引:23
作者
Zhang, Lei [1 ]
Martins, Andre F. [1 ,2 ]
Zhao, Piyu [1 ]
Wu, Yunkou [2 ]
Tircso, Gyula [3 ]
Sherry, A. Dean [1 ,2 ]
机构
[1] Univ Texas Dallas, Dept Chem & Biochem, 800 West Campbell Rd, Richardson, TX 75080 USA
[2] UT Southwestern Med Ctr, Adv Imaging Res Ctr, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
[3] Univ Debrecen, Dept Inorgan & Analyt Chem, Egyet Ter 1, H-4010 Debrecen, Hungary
基金
美国国家卫生研究院;
关键词
amide ligands; chemical exchange saturation transfer (CEST); pH responsive; lanthanide complexes; MRI contrast agents; WATER EXCHANGE-RATES; CONTRAST AGENT; IN-VIVO; GLUCOSE; COPPER;
D O I
10.1002/anie.201707959
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The CEST and T-1/T-2 relaxation properties of a series of Eu3+ and Dy3+ DOTA-tetraamide complexes with four appended primary amine groups are measured as a function of pH. The CEST signals in the Eu3+ complexes show a strong CEST signal after the pH was reduced from 8 to 5. The opposite trend was observed for the Dy3+ complexes where the r(2ex) of bulk water protons increased dramatically from ca. 1.5 mM(-1) s(-1) to 13 mM(-1) s(-1) between pH 5 and 9 while r(1) remained unchanged. A fit of the CEST data (Eu3+ complexes) to Bloch theory and the T-2ex data (Dy3+ complexes) to Swift-Connick theory provided the proton-exchange rates as a function of pH. These data showed that the four amine groups contribute significantly to proton-catalyzed exchange of the Ln(3+)-bound water protons even though their pK(a)'s are much higher than the observed CEST or T-2ex effects. This demonstrated the utility of using appended acidic/basic groups to catalyze prototropic exchange for imaging tissue pH by MRI.
引用
收藏
页码:16626 / 16630
页数:5
相关论文
共 44 条
[1]  
Aime S, 2002, ANGEW CHEM INT EDIT, V41, P4334, DOI 10.1002/1521-3773(20021115)41:22<4334::AID-ANIE4334>3.0.CO
[2]  
2-1
[3]   Prototropic and water-exchange processes in aqueous solutions of Gd(III) chelates [J].
Aime, S ;
Botta, M ;
Fasano, M ;
Terreno, E .
ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32 (11) :941-949
[4]  
Aime S, 2002, ANGEW CHEM, V114, P4510
[5]   Dual Contrast - Magnetic Resonance Fingerprinting (DCMRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents [J].
Anderson, Christian E. ;
Donnola, Shannon B. ;
Jiang, Yun ;
Batesole, Joshua ;
Darrah, Rebecca ;
Drumm, Mitchell L. ;
Brady-Kalnay, Susann M. ;
Steinmetz, Nicole F. ;
Yu, Xin ;
Griswold, Mark A. ;
Flask, Chris A. .
SCIENTIFIC REPORTS, 2017, 7
[6]   Magnetic resonance imaging of glutamate [J].
Cai, Kejia ;
Haris, Mohammad ;
Singh, Anup ;
Kogan, Feliks ;
Greenberg, Joel H. ;
Hariharan, Hari ;
Detre, John A. ;
Reddy, Ravinder .
NATURE MEDICINE, 2012, 18 (02) :302-306
[7]   Synthetic fluorescent probes for studying copper in biological systems [J].
Cotruvo, Joseph A., Jr. ;
Aron, Allegra T. ;
Ramos-Torres, Karla M. ;
Chang, Christopher J. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (13) :4400-4414
[8]   A Biomarker-Responsive T2ex MRI Contrast Agent [J].
Daryaei, Iman ;
Randtke, Edward A. ;
Pagel, Mark D. .
MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (04) :1665-1670
[9]   Towards extracellular Ca2+ sensing by MRI:: synthesis and calcium-dependent 1H and 17O relaxation studies of two novel bismacrocyclic Gd3+ complexes [J].
Dhingra, Kirti ;
Fouskova, Petra ;
Angelovski, Goran ;
Maier, Martin E. ;
Logothetis, Nikos K. ;
Toth, Eva .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2008, 13 (01) :35-46
[10]   A New Gadolinium-Based MRI Zinc Sensor [J].
Esqueda, Ana C. ;
Lopez, Jorge A. ;
Andreu-de-Riquer, Gabriel ;
Alvarado-Monzon, Jose C. ;
Ratnakar, James ;
Lubag, Angelo J. M. ;
Sherry, A. Dean ;
De Leon-Rodriguez, Luis M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (32) :11387-11391