Existence and energy decay of a Bresse system with thermoelasticity of type III

被引:3
作者
Djellali, F. [1 ]
Labidi, S. [2 ]
Taallah, F. [1 ]
机构
[1] Badji Mokhtar Univ, Math Modeling & Numer Simulat Lab, POB 12, Annaba 23000, Algeria
[2] Badji Mokhtar Univ, Lab Appl Math, POB 12, Annaba 23000, Algeria
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 01期
关键词
Bresse system; thermoelasticity of type III; general decay; Lyapunov functional; ASYMPTOTIC STABILITY;
D O I
10.1007/s00033-021-01641-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a one-dimensional thermoelastic Bresse system, where the heat conduction is given by Green and Naghdi theories. Under some assumptions on the memory kernel and a new introduced stability number, we prove that the unique damping given by the memory term is sufficiently strong to stabilize the system exponentially. In fact, we establish a general decay result from which the exponential and polynomial decays are only special cases.
引用
收藏
页数:25
相关论文
共 25 条
[1]   New decay rates for Cauchy problem of the Bresse system in thermoelasticty type III [J].
Afilal, Mounir ;
Soufyane, Abdelaziz ;
Radid, Atika .
APPLICABLE ANALYSIS, 2021, 100 (14) :2911-2926
[2]   Stability to weak dissipative Bresse system [J].
Boussouira, Fatiha Alabau ;
Munoz Rivera, Jaime E. ;
Almeida Junior, Dilberto da S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) :481-498
[3]  
Bresse, 1859, COURS MECANIQUE APPL
[4]  
Cattaneo C., 1949, ATTI SEMIN MAT FIS, V3, P83
[5]   Analysis of a contact problem for a viscoelastic Bresse system [J].
Copetti, Maria Ines M. ;
EL Arwadi, Toufic ;
Fernandez, Jose R. ;
Naso, Maria Grazia ;
Youssef, Wael .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (03) :887-911
[6]   Stability of thermoelastic Bresse systems [J].
de Lima, Pedro Roberto ;
Fernandez Sare, Hugo D. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01)
[7]   Asymptotic stability of thermoelastic systems of Bresse type [J].
Dell'Oro, Filippo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (11) :3902-3927
[8]   Exponential stabilization of the Timoshenko system by a thermo-viscoelastic damping [J].
Djebabla, A. ;
Tatar, N. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2010, 16 (02) :189-210
[9]   Exponential stabilization of the Timoshenko system by a thermal effect with an oscillating kernel [J].
Djebabla, Abdelhak ;
Tatar, Nasser-eddine .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) :301-314
[10]   On the Stabilization of the Bresse Beam with Kelvin-Voigt Damping [J].
El Arwadi, Toufic ;
Youssef, Wael .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03) :1831-1857