Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation

被引:68
作者
Huang, Jiajia [1 ]
Liu, Haodong [1 ]
Hu, Tao [1 ]
Meng, Ying Shirley [1 ]
Luo, Jian [1 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, Program Mat Sci & Engn, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Lithium ion batteries; Li-excess layered oxide; High energy density cathode; Surface phase; Complexion; LITHIUM-ION BATTERIES; CATHODE MATERIALS; RATE CAPABILITY; CAPACITY; IMPROVE; FACILE; FILMS; TIO2; MN; NI;
D O I
10.1016/j.jpowsour.2017.11.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
WO3 doping and accompanying spontaneous formation of a surface phase can substantially improve the discharge capacity, rate capability, and cycling stability of Co-free Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 cathode material. X-ray photoelectron spectroscopy, in conjunction with ion sputtering, shows that W segregates to the particle surfaces, decreases the surface Ni/Mn ratio, and changes the surface valence state. High-resolution transmission electron microscopy further suggests that W segregation increases surface structural disorder. The spontaneous and simultaneous changes in the surface structure, composition, and valence state represent the formation of a surface phase (Complexion) as the preferred surface thermodynamic state. Consequently, the averaged discharge capacity is increased by-13% from 251 to 284 mAh g(-1) at a low rate of C/20 and by similar to 200% from 30 to 90 mAh g(-1) at a high rate of 40C, in comparison with an undoped specimen processed under identical conditions. Moreover, after 100 cycles at a charge/discharge rate of 1C, the WO3 doped specimen retained a discharge capacity of 188 mAh g(-1), being 27% higher than that of the undoped specimen. In a broader context, this work exemplifies an opportunity of utilizing spontaneously-formed surface phases as a scalable and cost-effective method to improve materials properties.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 41 条
[1]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[2]   Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS [J].
Baggetto, Loic ;
Dudney, Nancy J. ;
Veith, Gabriel M. .
ELECTROCHIMICA ACTA, 2013, 90 :135-147
[3]   First Evidence of Manganese-Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries [J].
Boulineau, Adrien ;
Simonin, Loic ;
Colin, Jean-Francois ;
Bourbon, Carole ;
Patoux, Sebastien .
NANO LETTERS, 2013, 13 (08) :3857-3863
[4]   Grain boundary complexions [J].
Cantwell, Patrick R. ;
Tang, Ming ;
Dillon, Shen J. ;
Luo, Jian ;
Rohrer, Gregory S. ;
Harmer, Martin P. .
ACTA MATERIALIA, 2014, 62 :1-48
[5]   Review-Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes: II. Lithium-Rich, xLi⊂2⊆MnO⊂3⊆(1-x)LiNi⊂a⊆Co⊂b⊆Mn⊂c⊆O⊂2⊆ [J].
Erickson, Evan M. ;
Schipper, Florian ;
Penki, Tirupathi Rao ;
Shin, Ji-Yong ;
Erk, Christoph ;
Chesneau, Frederick-Francois ;
Markovsky, Boris ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A6341-A6348
[6]   From Lithium-Oxygen to Lithium-Air Batteries: Challenges and Opportunities [J].
Geng, Dongsheng ;
Ding, Ning ;
Hor, T. S. Andy ;
Chien, Sheau Wei ;
Liu, Zhaolin ;
Wuu, Delvin ;
Sun, Xueliang ;
Zong, Yun .
ADVANCED ENERGY MATERIALS, 2016, 6 (09)
[7]   Li2SiO3 Coating to Improve the High-voltage Performance of LiNi1/3Co1/3Mn1/3O2 Cathode [J].
He, Jianfu ;
Chu, Xiaodong ;
He, Yan-Bing ;
Liu, Dongqing ;
Liu, Yuxiu ;
Wu, Junxiong ;
Li, Baohua ;
Kang, Feiyu .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (08) :6902-6913
[8]   Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries [J].
He, Xin ;
Wang, Jun ;
Qiu, Bao ;
Paillard, Elie ;
Ma, Chuze ;
Cao, Xia ;
Liu, Haodong ;
Stan, Marian Cristian ;
Liu, Haidong ;
Gallash, Tobias ;
Meng, Y. Shirley ;
Li, Jie .
NANO ENERGY, 2016, 27 :602-610
[9]   ION-BEAM-INDUCED CHEMICAL-CHANGES IN THE OXYANIONS (CROYN-, MOOYN-, WOYN-, VOYN-, NBOYN-, AND TAOYN-) AND OXIDES (CROX, MOOX, WOX, VOX, NBOX, AND TAOX) [J].
HO, SF ;
CONTARINI, S ;
RABALAIS, JW .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (18) :4779-4788
[10]   A facile and generic method to improve cathode materials for lithium-ion batteries via utilizing nanoscale surface amorphous films of self-regulating thickness [J].
Huang, Jiajia ;
Luo, Jian .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (17) :7786-7798