Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction

被引:22
作者
Yang, Jinman [1 ]
Du, Huishuang [1 ]
Yu, Qing [1 ]
Zhang, Wei [1 ]
Zhang, Ying [1 ]
Ge, Junyu [2 ]
Li, Hong [2 ]
Liu, Jinyuan [1 ]
Li, Huaming [1 ]
Xu, Hui [1 ]
机构
[1] Jiangsu Univ, Sch Environm & Safety Engn, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Plasma engineering; Vulcanization; Electrocatalytic CO2 reduction; Non-metallic doping; Porous structure; CO2; REDUCTION; ELECTROREDUCTION; CATALYSTS; PERFORMANCE; CONVERSION; MONOXIDE;
D O I
10.1016/j.jcis.2021.08.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal electrode is considered as an ideal candidate for electrocatalytic carbon dioxide (CO2) reduction considering its excellent chemical stability, application potential and eco-friendly properties. Optimization process such as morphological control, non-metallic doping, alloying is widely studied to improve the efficiency of metal electrodes. In this work, we successfully improved the CO2 reduction performance of silver using a facile plasma vulcanization treatment. The obtained sulfide derived silver (Ag) porous microrods (SD-AgPMRs) are optimized from both morphology and composition aspects, and demonstrates high Faradaic efficiency and partial current density for carbon monoxide (CO) production at low potentials. The larger specific surface area of porous microrod structure and the improved adsorption energy of important intermediates in comparison with Ag foil are realized by introduction of sulfur (S) atoms after plasma vulcanization activation, as suggested by density functional theory (DFT) calculations. This work presents a novel strategy to optimize metal electrocatalysts for CO2 reduction as well as to improve catalysis in other fields. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:793 / 799
页数:7
相关论文
共 37 条
[1]   Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO [J].
Back, Seoin ;
Yeom, Min Sun ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (09) :5089-5096
[2]   Efficient electroreduction of CO2 to CO by Ag-decorated S-doped g-C3N4/CNT nanocomposites at industrial scale current density [J].
Chen, J. ;
Wang, Z. ;
Lee, H. ;
Mao, J. ;
Grimes, C. A. ;
Liu, C. ;
Zhang, M. ;
Lu, Z. ;
Chen, Y. ;
Feng, S. -P. .
MATERIALS TODAY PHYSICS, 2020, 12
[3]   Pomegranate-like N,P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution [J].
Chen, Yu-Yun ;
Zhang, Yun ;
Jiang, Wen-Jie ;
Zhang, Xing ;
Dai, Zhihui ;
Wan, Li-Jun ;
Hu, Jin-Song .
ACS NANO, 2016, 10 (09) :8851-8860
[4]   Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4 [J].
Choi, Chungseok ;
Kwon, Soonho ;
Cheng, Tao ;
Xu, Mingjie ;
Tieu, Peter ;
Lee, Changsoo ;
Cai, Jin ;
Lee, Hyuck Mo ;
Pan, Xiaoqing ;
Duan, Xiangfeng ;
Goddard, William A., III ;
Huang, Yu .
NATURE CATALYSIS, 2020, 3 (10) :804-812
[5]   On the Role of Sulfur for the Selective Electrochemical Reduction of CO2 to Formate on CuSx Catalysts [J].
Deng, Yilin ;
Huang, Yun ;
Ren, Dan ;
Handoko, Albertus D. ;
Seh, Zhi Wei ;
Hirunsit, Pussana ;
Yeo, Boon Siang .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (34) :28572-28581
[6]   Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy [J].
Dou, Shuo ;
Tao, Li ;
Wang, Ruilun ;
El Hankari, Samir ;
Chen, Ru ;
Wang, Shuangyin .
ADVANCED MATERIALS, 2018, 30 (21)
[7]   Probing the Reaction Mechanism of CO2 Electroreduction over Ag Films via Operando Infrared Spectroscopy [J].
Firet, Nienke J. ;
Smith, Wilson A. .
ACS CATALYSIS, 2017, 7 (01) :606-612
[8]   Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4 [J].
Han, Lili ;
Song, Shoujie ;
Liu, Mingjie ;
Yao, Siyu ;
Liang, Zhixiu ;
Cheng, Hao ;
Ren, Zhouhong ;
Liu, Wei ;
Lin, Ruoqian ;
Qi, Gaocan ;
Liu, Xijun ;
Wu, Qin ;
Luo, Jun ;
Xin, Huolin L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (29) :12563-12567
[9]   Rational Design of Sulfur-Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate [J].
Huang, Yun ;
Deng, Yilin ;
Handoko, Albertus D. ;
Goh, Gregory K. L. ;
Yeo, Boon Siang .
CHEMSUSCHEM, 2018, 11 (01) :320-326
[10]   Stable surface oxygen on nanostructured silver for efficient CO2 electroreduction [J].
Jee, Michael Shincheon ;
Kim, Haeri ;
Jeon, Hyo Sang ;
Chae, Keun Hwa ;
Cho, Jinhan ;
Min, Byoung Koun ;
Hwang, Yun Jeong .
CATALYSIS TODAY, 2017, 288 :48-53