High Order Control Lyapunov-Barrier Functions for Temporal Logic Specifications

被引:0
作者
Xiao, Wei [1 ,2 ]
Belta, Calin A. [1 ,2 ]
Cassandras, Christos G. [1 ,2 ]
机构
[1] Boston Univ, Div Syst Engn, Brookline, MA 02446 USA
[2] Boston Univ, Ctr Informat & Syst Engn, Brookline, MA 02446 USA
来源
2021 AMERICAN CONTROL CONFERENCE (ACC) | 2021年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent work has shown that stabilizing an affine control system to a desired state while optimizing a quadratic cost subject to state and control constraints can be reduced to a sequence of Quadratic Programs (QPs) by using Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs). In our own recent work, we defined High Order CBFs (HOCBFs) for systems and constraints with arbitrary relative degrees. In this paper, in order to accommodate initial states that do not satisfy the state constraints and constraints with arbitrary relative degree, we generalize HOCBFs to High Order Control Lyapunov-Barrier Functions (HOCLBFs). We also show that the proposed HOCLBFs can be used to guarantee the Boolean satisfaction of Signal Temporal Logic (STL) formulae over the state of the system. We illustrate our approach on a safety-critical optimal control problem (OCP) for a unicycle.
引用
收藏
页码:4886 / 4891
页数:6
相关论文
共 23 条
  • [1] Control Barrier Function Based Quadratic Programs for Safety Critical Systems
    Ames, Aaron D.
    Xu, Xiangru
    Grizzle, Jessy W.
    Tabuada, Paulo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3861 - 3876
  • [2] STABILIZATION WITH RELAXED CONTROLS
    ARTSTEIN, Z
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (11) : 1163 - 1173
  • [3] Aubin J. -P., 2009, Viability theory, DOI 10.1007/978-0-8176-4910-4
  • [4] Boyd L., 2004, Convex Optimization, DOI DOI 10.1017/CBO9780511804441
  • [5] Freeman R. A., 1996, Robust nonlinear control design: State-space and Lyapunov techniques
  • [6] Glotfelter P, 2017, IEEE CONTR SYST LETT, V1, P310, DOI 10.1109/LCSYS.2017.2710943
  • [7] Khalil H.K., 2002, NONLINEAR SYSTEMS, V3
  • [8] Li AQ, 2018, IEEE INT C INT ROBOT, P3723, DOI 10.1109/IROS.2018.8594302
  • [9] Control Barrier Functions for Signal Temporal Logic Tasks
    Lindemann, Lars
    Dimarogonas, Dimos V.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (01): : 96 - 101
  • [10] Monitoring temporal properties of continuous signals
    Maler, O
    Nickovic, D
    [J]. FORMAL TECHNIQUES, MODELLING AND ANALYSIS OF TIMED AND FAULT-TOLERANT SYSTEMS, PROCEEDINGS, 2004, 3253 : 152 - 166