Self-Powered Smart Gloves Based on Triboelectric Nanogenerators

被引:25
|
作者
Shen, Sophia [1 ]
Xiao, Xiao [1 ]
Yin, Junyi [1 ]
Chen, Jun [1 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
来源
SMALL METHODS | 2022年 / 6卷 / 10期
关键词
artificial intelligence; gesture recognition; gloves; human-machine interface; triboelectric nanogenerators; wearable bioelectronics; HAND GESTURE RECOGNITION; REAL-TIME; INPUT DEVICE; NANOFIBER; EVOLUTION; SYSTEM; SENSOR; IMU;
D O I
10.1002/smtd.202200830
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hands are used in all facets of daily life, from simple tasks such as grasping and holding to complex tasks such as communication and using technology. Finding a way to not only monitor hand movements and gestures but also to integrate that data with technology is thus a worthwhile task. Gesture recognition is particularly important for those who rely on sign language to communicate, but the limitations of current vision-based and sensor-based methods, including lack of portability, bulkiness, low sensitivity, highly expensive, and need for external power sources, among many others, make them impractical for daily use. To resolve these issues, smart gloves can be created using a triboelectric nanogenerator (TENG), a self-powered technology that functions based on the triboelectric effect and electrostatic induction and is also cheap to manufacture, small in size, lightweight, and highly flexible in terms of materials and design. In this review, an overview of the existing self-powered smart gloves will be provided based on TENGs, both for gesture recognition and human-machine interface, concluding with a discussion on the future outlook of these devices.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] High Performance Triboelectric Nanogenerators for Self-Powered Electronics
    Baik, Jeong Min
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (IEEE-NANOMED 2019), 2019, : 40 - 40
  • [22] Innovative Technology for Self-Powered Sensors: Triboelectric Nanogenerators
    Wang, Nannan
    Liu, Yupeng
    Ye, Enyi
    Li, Zibiao
    Wang, Daoai
    ADVANCED SENSOR RESEARCH, 2023, 2 (05):
  • [23] Triboelectric Nanogenerators as a Self-Powered Motion Tracking System
    Chen, Mengxiao
    Li, Xiaoyi
    Lin, Long
    Du, Weiming
    Han, Xun
    Zhu, Jing
    Pan, Caofeng
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) : 5059 - 5066
  • [24] Triboelectric nanogenerators for self-powered sensors and other applications
    Lee, Chengkuo
    Qin, Yong
    Wang, Yi-Cheng
    MRS BULLETIN, 2025,
  • [25] Advances in Triboelectric Nanogenerators for Self-Powered Regenerative Medicine
    Parandeh, Samira
    Etemadi, Niloofar
    Kharaziha, Mahshid
    Chen, Guorui
    Nashalian, Ardo
    Xiao, Xiao
    Chen, Jun
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (47)
  • [26] Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems
    Huang, Peng
    Wen, Dan-Liang
    Qiu, Yu
    Yang, Ming-Hong
    Tu, Cheng
    Zhong, Hong-Sheng
    Zhang, Xiao-Sheng
    MICROMACHINES, 2021, 12 (02)
  • [27] Flexible self-powered supercapacitors integrated with triboelectric nanogenerators
    Rani, Shalu
    Khandelwal, Gaurav
    Kumar, Sanjay
    Pillai, Suresh C.
    Stylios, George K.
    Gadegaard, Nikolaj
    Mulvihill, Daniel M.
    ENERGY STORAGE MATERIALS, 2025, 74
  • [28] Textile-Based Triboelectric Nanogenerators for Self-Powered Wearable Electronics
    Kwak, Sung Soo
    Yoon, Hong-Joon
    Kim, Sang-Woo
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (02)
  • [29] Triboelectric nanogenerators as self-powered sensors for biometric authentication
    Shi, Xue
    Han, Kai
    Pang, Yaokun
    Mai, Wenjie
    Luo, Jianjun
    NANOSCALE, 2023, 15 (22) : 9635 - 9651
  • [30] High Performance Triboelectric Nanogenerators for Self-powered Electronics
    Han, Haewook
    Kim, Jin-Woo
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (IEEE-NANOMED 2019), 2019, : 64 - 64