The Gibbs-Thomson relation for non homogeneous anisotropic phase transitions

被引:7
作者
Cicalese, Marco [1 ]
Nagase, Yuko [1 ]
Pisante, Giovanni [2 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, I-80126 Naples, Italy
[2] Seconda Univ Napoli, Dipartimento Matemat, I-81100 Caserta, Italy
基金
欧洲研究理事会;
关键词
Anisotropic phase transition; Gibbs-Thomson relation for surface tension; Finsler metrics; GRADIENT THEORY; VARIATIONAL-PROBLEMS; MEAN-CURVATURE; SURFACES; REGULARITY; VECTOR; MODELS;
D O I
10.1515/ACV.2010.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the Gibbs-Thomson relation between the coarse grained chemical potential and the non homogeneous and anisotropic mean curvature of a phase interface within the gradient theory of phase transitions thus proving a generalization of a conjecture stated by Gurtin and proved by Luckhaus and Modica in the homogeneous and isotropic case.
引用
收藏
页码:321 / 344
页数:24
相关论文
共 26 条
[2]   A NOTION OF TOTAL VARIATION DEPENDING ON A METRIC WITH DISCONTINUOUS COEFFICIENTS [J].
AMAR, M ;
BELLETTINI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (01) :91-133
[3]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[4]  
Ambrosio L., 2005, LECT MATH
[5]   Gradient theory of phase transitions in composite media [J].
Ansini, N ;
Braides, A ;
Piat, VC .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :265-296
[6]  
Bellettini G, 2000, ASYMPTOTIC ANAL, V22, P87
[7]  
BELLETTINI G, 2009, BANACH CTR PUBLICATI, V86, P21
[8]  
Bellettini G., 1996, HOKKAIDO MATH J, V25, P537, DOI DOI 10.14492/HOKMJ/1351516749
[9]   SINGULAR PERTURBATIONS OF VARIATIONAL-PROBLEMS ARISING FROM A 2-PHASE TRANSITION MODEL [J].
BOUCHITTE, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (03) :289-314
[10]  
BRAIDES A, 2000, FREE DISCONTINUITY P, P171