One-Shot Rates for Entanglement Manipulation Under Non-entangling Maps

被引:94
作者
Brandao, Fernando G. S. L. [1 ]
Datta, Nilanjana [2 ]
机构
[1] Univ Fed Minas Gerais, Dept Phys, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Stat Lab, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
Entanglement manipulation; non-entangling maps; logarithmic robustness; min- and max-relative entropies of entanglement; IRREVERSIBILITY; STATE;
D O I
10.1109/TIT.2011.2104531
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We obtain expressions for the optimal rates of one-shot entanglement manipulation under operations which generate a negligible amount of entanglement. As the optimal rates for entanglement distillation and dilution in this paradigm, we obtain the max- and min-relative entropies of entanglement, the two logarithmic robustnesses of entanglement, and smoothed versions thereof. This gives a new operational meaning to these entanglement measures. Moreover, by considering the limit of many identical copies of the shared entangled state, we partially recover the recently found reversibility of entanglement manipulation under the class of operations which asymptotically do not generate entanglement.
引用
收藏
页码:1754 / 1760
页数:7
相关论文
共 38 条
[1]   Entanglement cost under positive-partial-transpose-preserving operations - art. no. 0279015 [J].
Audenaert, K ;
Plenio, MB ;
Eisert, J .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[2]   Approximating the set of separable states using the positive partial transpose test [J].
Beigi, Salman ;
Shor, Peter W. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
[3]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[4]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[5]   Beyond i.i.d. in quantum information theory [J].
Bowen, Garry ;
Datta, Nilanjana .
2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, :451-+
[6]   A Reversible Theory of Entanglement and its Relation to the Second Law [J].
Brandao, Fernando G. S. L. ;
Plenio, Martin B. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) :829-851
[7]   A Generalization of Quantum Stein's Lemma [J].
Brandao, Fernando G. S. L. ;
Plenio, Martin B. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) :791-828
[8]   Entanglement theory and the second law of thermodynamics [J].
Brandao, Fernando G. S. L. ;
Plenio, Martin B. .
NATURE PHYSICS, 2008, 4 (11) :873-877
[9]  
BRANDAO FGS, 2011, MINIMUM REVERS UNPUB
[10]  
BRANDAO FGS, 2008, ARXIV08100026 IMP CO