Bridging the Gap Between Remote Sensing and Plant Phenotyping-Challenges and Opportunities for the Next Generation of Sustainable Agriculture

被引:28
作者
Machwitz, Miriam [1 ]
Pieruschka, Roland [2 ]
Berger, Katja [3 ]
Schlerf, Martin [1 ]
Aasen, Helge [4 ]
Fahrner, Sven [2 ]
Jimenez-Berni, Jose [5 ]
Baret, Frederic [6 ]
Rascher, Uwe [7 ]
机构
[1] Luxembourg Inst Sci & Technol, Dept Environm Res & Innovat, Belval, Luxembourg
[2] Forschungszentrum Julich, Helmholtz Verband Deutsch Forschungszentren, Inst Bio & Geosci, Plant Sci, Julich, Germany
[3] Ludwig Maximilians Univ Munchen, Dept Geog, Munich, Germany
[4] ETH ETH Zurich, Dept Environm Syst Sci, Crop Sci, Zurich, Switzerland
[5] CSIC, Inst Agr Sostenible, Cordoba, Spain
[6] INRAE EMMAH CAPTE, Avignon, France
[7] Forschungszentrum Julich, Inst Bio & Geosci Plant Sci IBG 2, Julich, Germany
关键词
remote sensing; high-throughput field phenotyping; unmanned aerial vehicles (UAVs); multi-sensor synergies; open-data standards; vegetation traits; radiative transfer models (RTM); smart farming; FLUORESCENCE; PHOTOSYNTHESIS; TEMPERATURE;
D O I
10.3389/fpls.2021.749374
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
[No abstract available]
引用
收藏
页数:7
相关论文
共 42 条
[1]   Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows [J].
Aasen, Helge ;
Honkavaara, Eija ;
Lucieer, Arko ;
Zarco-Tejada, Pablo J. .
REMOTE SENSING, 2018, 10 (07)
[2]   Multi-temporal high-resolution imaging spectroscopy with hyperspectral 2D imagers - From theory to application [J].
Aasen, Helge ;
Bolten, Andreas .
REMOTE SENSING OF ENVIRONMENT, 2018, 205 :374-389
[3]  
[Anonymous], 2018, HYPERSPECTRAL REMOTE
[4]   A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data [J].
Berger, Katja ;
Rivera Caicedo, Juan Pablo ;
Martino, Luca ;
Wocher, Matthias ;
Hank, Tobias ;
Verrelst, Jochem .
REMOTE SENSING, 2021, 13 (02) :1-23
[5]   Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions [J].
Berger, Katja ;
Verrelst, Jochem ;
Feret, Jean-Baptiste ;
Wang, Zhihui ;
Wocher, Matthias ;
Strathmann, Markus ;
Danner, Martin ;
Mauser, Wolfram ;
Hank, Tobias .
REMOTE SENSING OF ENVIRONMENT, 2020, 242
[6]   Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review [J].
Chlingaryan, Anna ;
Sukkarieh, Salah ;
Whelan, Brett .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 151 :61-69
[7]   Resources for image-based high-throughput phenotyping in crops and data sharing challenges [J].
Danilevicz, Monica F. ;
Bayer, Philipp E. ;
Nestor, Benjamin J. ;
Bennamoun, Mohammed ;
Edwards, David .
PLANT PHYSIOLOGY, 2021, 187 (02) :699-715
[8]   Phenotyping Whole Forests Will Help to Track Genetic Performance [J].
Dungey, Heidi S. ;
Dash, Jonathan P. ;
Pont, David ;
Clinton, Peter W. ;
Watt, Michael S. ;
Telferl, Emily J. .
TRENDS IN PLANT SCIENCE, 2018, 23 (10) :854-864
[9]  
FAO, 2017, The Future of Food and Agriculture-Trends and Challenges
[10]   PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents [J].
Feret, Jean-Baptiste ;
Berger, Katja ;
de Boissieu, Florian ;
Malenovsky, Zbynek .
REMOTE SENSING OF ENVIRONMENT, 2021, 252