On LaSalle's invariance principle and its application to robust synchronization of general vector Lienard equations

被引:28
作者
Chen, GR [1 ]
Zhou, J
Celikovsky, S
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Fudan Univ, Lab Nonlinear Sci, Inst Math, Shanghai 200433, Peoples R China
[3] Hebei Univ Technol, Dept Appl Math, Tianjin 300130, Peoples R China
[4] Czech Tech Univ, Dept Control Engn, Fac Elect Engn, CR-16635 Prague, Czech Republic
[5] Acad Sci Czech Republ, Inst Informat Theory & Automat, Prague 18208, Czech Republic
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Chaos synchronization; duffing oscillator; LaSalle's invariance principle; Lienard equation; Lyapunov functional; nonautonomous dynamical system;
D O I
10.1109/TAC.2005.849250
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A functional version of LaSalle's invariance principle is derived, i.e., rather than the usual pointwise Lyapunov-like functions it uses specially constructed functionals along system trajectories. This modification enables the principle to handle even nonautonomous systems to which the classical LaSalle's principle is not directly applicable. The new theoretical results are then used to study robust synchronization of general Lienard type of systems. The developed technique is finally applied to chaotic oscillators synchronization. Numerical simulation is included to demonstrate the effectiveness of the proposed methodology.
引用
收藏
页码:869 / 874
页数:6
相关论文
共 21 条
[1]   ASYMPTOTIC STABILITY OF NONAUTONOMOUS SYSTEMS BY LIAPUNOVS DIRECT METHOD [J].
AEYELS, D .
SYSTEMS & CONTROL LETTERS, 1995, 25 (04) :273-280
[2]  
BLAZEJCZYKOKOLE.B, 1999, CHAOTIC MECH SYSTEMS
[3]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[4]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[5]  
Chen G., 2003, Chaos Control: Theory and Applications, Vvol 292
[6]  
CHEN G, 1999, WILEY ENCY ELECT ELE, V3, P194
[7]  
Chen G., 1998, CHAOS ORDER PERSPECT
[8]   MULTIPLE CRACK PROBLEM FOR AN INFINITE STRIP [J].
CHEN, YZ .
ENGINEERING FRACTURE MECHANICS, 1991, 40 (01) :9-16
[9]  
Dogaru R., 2003, UNIVERSALITY EMERGEN
[10]  
Guckenheimer J., 1983, NONLINEAR OSCILLATIO, V42