feature selection;
quadratic programming;
Nystrom method;
large data set;
high-dimensional data;
REAL-TIME CLASSIFICATION;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Identifying a subset of features that preserves classification accuracy is a problem of growing importance, because of the increasing size and dimensionality of real-world data sets. We propose a new feature selection method, named Quadratic Programming Feature Selection (QPFS), that reduces the task to a quadratic optimization problem. In order to limit the computational complexity of solving the optimization problem, QPFS uses the Nystrom method for approximate matrix diagonalization. QPFS is thus capable of dealing with very large data sets, for which the use of other methods is computationally expensive. In experiments with small and medium data sets, the QPFS method leads to classification accuracy similar to that of other successful techniques. For large data sets, QPFS is superior in terms of computational efficiency.
机构:
Departamento de Ingeniería Informática and IIC, Universidad Autónoma de Madrid, 28049 Madrid, SpainDepartamento de Ingeniería Informática and IIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Rodriguez-Lujan, Irene
Huerta, Ramon
论文数: 0引用数: 0
h-index: 0
机构:
BioCircuits Institute, University of California, San Diego, San Diego, CA 92093-0402, United StatesDepartamento de Ingeniería Informática and IIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Huerta, Ramon
Elkan, Charles
论文数: 0引用数: 0
h-index: 0
机构:
Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA 92093-0404, United StatesDepartamento de Ingeniería Informática and IIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Elkan, Charles
Cruz, Carlos Santa
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Ingeniería Informática and IIC, Universidad Autónoma de Madrid, 28049 Madrid, SpainDepartamento de Ingeniería Informática and IIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain
机构:
Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast
Skolkovo Institute of Science and Technology, ul. Nobelya 3, MoscowMoscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast
Isachenko R.V.
Strijov V.V.
论文数: 0引用数: 0
h-index: 0
机构:
Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast
A.A. Dorodnicyn Computing Centre, Russian Academy of Sciences, ul. Vavilova 40, MoscowMoscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast
机构:
Korea Inst Sci & Technol, Image & Media Res Ctr, 5 Hwarang Ro 14 Gil, Seoul 02792, South KoreaKorea Inst Sci & Technol, Image & Media Res Ctr, 5 Hwarang Ro 14 Gil, Seoul 02792, South Korea