Plant growth-promoting bacteria improve maize growth through reshaping the rhizobacterial community in low-nitrogen and low-phosphorus soil

被引:47
作者
Chen, La [1 ]
Li, Keke [1 ]
Shang, Jiaoying [1 ]
Wu, Yue [1 ]
Chen, Ting [1 ]
Wanyan, Yuqian [1 ]
Wang, Entao [2 ]
Tian, Changfu [1 ]
Chen, Wenfeng [1 ]
Chen, Wenxin [1 ]
Mi, Guohua [3 ]
Sui, Xinhua [1 ]
机构
[1] China Agr Univ, Coll Biol Sci, State Key Lab Agrobiotechnol, Key Lab Soil Microbiol,Minist Agr, Beijing 100193, Peoples R China
[2] Inst Politecn Nacl, Escuela Nacl Ciencias Biol, Mexico City 11340, DF, Mexico
[3] China Agr Univ, Coll Resources & Environm Sci, Key Lab Plant Soil Interact, Minist Educ, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
PGPR; Field inoculation; Rhizobacterial community; Bacterial function; Maize; RHIZOSPHERE MICROBIOME; DIVERSITY; PGPR; ACIDOBACTERIA; INOCULATION; TIME;
D O I
10.1007/s00374-021-01598-6
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The effects of 13 plant growth-promoting rhizobacteria (PGPR) from the maize rhizosphere and a model PGPR strain Azospirillum brasilense Az39 on maize growth were monitored in a 3-year field inoculation experiment (from 2018 to 2020) with low-nitrogen (N) (N input reduced by 50%) and low-phosphorus (P) (no P supply) soils in Northeast China. The effects of four efficient PGPR that stably promoted maize plant growth and affected on the composition and function of the rhizobacterial community were further investigated in 2019 and 2020. On average, Sinorhizobium sp. A15, Bacillus sp. A28, Sphingomonas sp. A55, and Enterobacter sp. P24 stably increased grain yield by 8.1-17.8% and 11.0-20.1% in low-N and low-P soil, respectively. Inoculation of these four strains increased the abundance and species richness of rhizobacteria, enriched special beneficial bacteria such as Chloroflexia_KD4-96 and Bacilli, and decreased bacterial functions related to soil-N loss. We conclude that some PGPR can N- and P-use efficiency and maize yield through reshaping the rhizobacterial community.
引用
收藏
页码:1075 / 1088
页数:14
相关论文
共 67 条
[1]   Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers [J].
Adesemoye, A. O. ;
Torbert, H. A. ;
Kloepper, J. W. .
MICROBIAL ECOLOGY, 2009, 58 (04) :921-929
[2]   Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities [J].
Ahmad, Farah ;
Ahmad, Iqbal ;
Khan, M. S. .
MICROBIOLOGICAL RESEARCH, 2008, 163 (02) :173-181
[3]   Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture [J].
Backer, Rachel ;
Rokem, J. Stefan ;
Ilangumaran, Gayathri ;
Lamont, John ;
Praslickova, Dana ;
Ricci, Emily ;
Subramanian, Sowmyalakshmi ;
Smith, Donald L. .
FRONTIERS IN PLANT SCIENCE, 2018, 9
[4]   Harnessing the rhizosphere microbiome through plant breeding and agricultural management [J].
Bakker, Matthew G. ;
Manter, Daniel K. ;
Sheflin, Amy M. ;
Weir, Tiffany L. ;
Vivanco, Jorge M. .
PLANT AND SOIL, 2012, 360 (1-2) :1-13
[5]   The rhizosphere microbiome and plant health [J].
Berendsen, Roeland L. ;
Pieterse, Corne M. J. ;
Bakker, Peter A. H. M. .
TRENDS IN PLANT SCIENCE, 2012, 17 (08) :478-486
[6]   Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture [J].
Bhattacharyya, P. N. ;
Jha, D. K. .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2012, 28 (04) :1327-1350
[7]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[8]   Everything you must know about Azospirillum and its impact on agriculture and beyond [J].
Cassan, Fabricio ;
Coniglio, Anahi ;
Lopez, Gaston ;
Molina, Romina ;
Nievas, Sofia ;
de Carlan, Coline Le Noir ;
Donadio, Florencia ;
Torres, Daniela ;
Rosas, Susana ;
Pedrosa, Fabio Olivera ;
de Souza, Emanuel ;
Zorita, Martin Diaz ;
de-Bashan, Luz ;
Mora, Veronica .
BIOLOGY AND FERTILITY OF SOILS, 2020, 56 (04) :461-479
[9]   Azospirillum sp in current agriculture: From the laboratory to the field [J].
Cassan, Fabricio ;
Diaz-Zorita, Martin .
SOIL BIOLOGY & BIOCHEMISTRY, 2016, 103 :117-130
[10]   Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation [J].
Chang, Cheng-Hsiung ;
Yang, Shang-Shyng .
BIORESOURCE TECHNOLOGY, 2009, 100 (04) :1648-1658