Free Vibration Analysis of Curved Laminated Composite Beams with Different Shapes, Lamination Schemes, and Boundary Conditions

被引:8
作者
Qin, Bin [1 ,2 ,3 ]
Zhao, Xing [4 ]
Liu, Huifang [1 ,2 ,3 ]
Yu, Yongge [5 ]
Wang, Qingshan [4 ]
机构
[1] Cent South Univ, Sch Traff & Transportat Engn, Key Lab Traff Safety Track, Minist Educ, Changsha 410075, Peoples R China
[2] Cent South Univ, Joint Int Res Lab Key Technol Rail Traff Safety, Changsha 410075, Peoples R China
[3] Cent South Univ, Natl & Local Joint Engn Res Ctr Safety Technol Ra, Changsha 410075, Peoples R China
[4] Cent South Univ, State Key Lab High Performance Complex Mfg, Changsha 410083, Peoples R China
[5] CRRC Changchun Railway Vehicles Co LTD, Overall R&D Dept, Changchun 130062, Peoples R China
基金
中国国家自然科学基金;
关键词
modified variational approach; curved laminated composite beams; Jacobi polynomials; alterable curvatures; multi-segment partitioning strategy; REVOLUTION SHELL STRUCTURES; CYLINDRICAL-SHELLS; INPLANE VIBRATION; FORCED VIBRATION; CURVATURE; FORMULATION; DYNAMICS; BEHAVIOR; THICK;
D O I
10.3390/ma13041010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A general formulation is considered for the free vibration of curved laminated composite beams (CLCBs) with alterable curvatures and diverse boundary restraints. In accordance with higher-order shear deformation theory (HSDT), an improved variational approach is introduced for the numerical modeling. Besides, the multi-segment partitioning strategy is exploited for the derivation of motion equations, where the CLCBs are separated into several segments. Penalty parameters are considered to handle the arbitrary boundary conditions. The admissible functions of each separated beam segment are expanded in terms of Jacobi polynomials. The solutions are achieved through the variational approach. The proposed methodology can deal with arbitrary boundary restraints in a unified way by conveniently changing correlated parameters without interfering with the solution procedure.
引用
收藏
页数:22
相关论文
共 35 条
[1]   A PENALTY MODEL FOR THE ANALYSIS OF CURVED COMPOSITE BEAMS [J].
ASCIONE, L ;
FRATERNALI, F .
COMPUTERS & STRUCTURES, 1992, 45 (5-6) :985-999
[2]   Three-dimensional vibration behavior of bi-directional functionally graded curved parallelepipeds using spectral Tchebychev approach [J].
Bediz, Bekir .
COMPOSITE STRUCTURES, 2018, 191 :100-112
[3]   A spectral-Tchebychev solution for three-dimensional dynamics of curved beams under mixed boundary conditions [J].
Bediz, Bekir ;
Aksoy, Serdar .
JOURNAL OF SOUND AND VIBRATION, 2018, 413 :26-40
[4]   An accurate one-dimensional theory for the dynamics of laminated composite curved beams [J].
Carpentieri, Gerardo ;
Tornabene, Francesco ;
Ascione, Luigi ;
Fraternali, Fernando .
JOURNAL OF SOUND AND VIBRATION, 2015, 336 :96-105
[5]   Elasticity solution for free vibration of laminated beams [J].
Chen, WQ ;
Lv, CF ;
Bian, ZG .
COMPOSITE STRUCTURES, 2003, 62 (01) :75-82
[6]   Free vibration analysis of coupled functionally graded (FG) doubly-curved revolution shell structures with general boundary conditions [J].
Choe, Kwangnam ;
Tang, Jinyuan ;
Shui, Cijun ;
Wang, Ailun ;
Wang, Qingshan .
COMPOSITE STRUCTURES, 2018, 194 :413-432
[7]   Vibration analysis for coupled composite laminated axis-symmetric doubly-curved revolution shell structures by unified Jacobi-Ritz method [J].
Choe, Kwangnam ;
Wang, Qingshan ;
Tang, Jinyuan ;
Shui, Cijun .
COMPOSITE STRUCTURES, 2018, 194 :136-157
[8]   The Effect of Polycaprolactone Nanofibers on the Dynamic and Impact Behavior of Glass Fibre Reinforced Polymer Composites [J].
Garcia, Cristobal ;
Trendafilova, Irina ;
Zucchelli, Andrea .
JOURNAL OF COMPOSITES SCIENCE, 2018, 2 (03)
[9]   Vibratory behaviour of glass fibre reinforced polymer (GFRP) interleaved with nylon nanofibers [J].
Garcia, Cristobal ;
Wilson, Jodi ;
Trendafilova, Irina ;
Yang, Liu .
COMPOSITE STRUCTURES, 2017, 176 :923-932
[10]   Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions [J].
Hajianmaleki, Mehdi ;
Qatu, Mohamad S. .
COMPOSITES PART B-ENGINEERING, 2012, 43 (04) :1767-1775