Coupling multi-physics models to cardiac mechanics

被引:142
作者
Nordsletten, D. A. [1 ]
Niederer, S. A. [1 ]
Nash, M. P. [2 ,3 ]
Hunter, P. J. [2 ]
Smith, N. P. [1 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
[2] Univ Auckland, Auckland Bioengn Inst, Auckland 1, New Zealand
[3] Univ Auckland, Dept Engn Sci, Auckland 1, New Zealand
关键词
Large deformation mechanics; Multi-physics modelling; Cardiac mechanics; LEFT-VENTRICULAR WALL; FLUID-STRUCTURE INTERACTION; CANINE LEFT-VENTRICLE; CORONARY BLOOD-FLOW; MYOCARDIAL FIBER ORIENTATION; FINITE-ELEMENT-METHOD; ELECTROMECHANICAL MODEL; BOUNDARY-CONDITIONS; LAMINAR STRUCTURE; STRESS-ANALYSIS;
D O I
10.1016/j.pbiomolbio.2009.11.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian-Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 122 条
[1]  
ANREP GV, 1927, HEAN, V14, P133
[2]   A MODEL OF THE MECHANICS OF THE LEFT-VENTRICLE [J].
ARTS, T ;
RENEMAN, RS ;
VEENSTRA, PC .
ANNALS OF BIOMEDICAL ENGINEERING, 1979, 7 (3-4) :299-318
[3]   Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging [J].
Augenstein, KF ;
Cowan, BR ;
LeGrice, IJ ;
Nielsen, PMF ;
Young, AA .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (01) :148-157
[4]   Model and influence of mitral valve opening during the left ventricular filling [J].
Baccani, B ;
Domenichini, F ;
Pedrizzetti, G .
JOURNAL OF BIOMECHANICS, 2003, 36 (03) :355-361
[5]   Fluid dynamics of the left ventricular filling in dilated cardiomyopathy [J].
Baccani, B ;
Domenichini, F ;
Pedrizzetti, G ;
Tonti, G .
JOURNAL OF BIOMECHANICS, 2002, 35 (05) :665-671
[6]   Finite element developments for general fluid flows with structural interactions [J].
Bathe, KJ ;
Zhang, H .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (01) :213-232
[7]   Benchmark problems for incompressible fluid flows with structural interactions [J].
Bathe, Klaus-Juergen ;
Ledezma, Gustavo A. .
COMPUTERS & STRUCTURES, 2007, 85 (11-14) :628-644
[8]   DEPENDENCE OF LOCAL LEFT-VENTRICULAR WALL MECHANICS ON MYOCARDIAL FIBER ORIENTATION - A MODEL STUDY [J].
BOVENDEERD, PHM ;
ARTS, T ;
HUYGHE, JM ;
VANCAMPEN, DH ;
RENEMAN, RS .
JOURNAL OF BIOMECHANICS, 1992, 25 (10) :1129-1140
[9]   Effect of transmurally heterogeneous myocyte excitation-contraction coupling on canine left ventricular electromechanics [J].
Campbell, Stuart G. ;
Howard, Elliot ;
Aguado-Sierra, Jazmin ;
Coppola, Benjamin A. ;
Omens, Jeffrey H. ;
Mulligan, Lawrence J. ;
McCulloch, AndrewD. ;
Kerckhoffs, Roy C. P. .
EXPERIMENTAL PHYSIOLOGY, 2009, 94 (05) :541-552
[10]  
CERVERA M, 1994, ENG COMPUT, V13, P4