FUNCTIONAL ANALYTIC ISSUES IN Z2n-GEOMETRY

被引:12
作者
Bruce, Andrew James [1 ]
Poncin, Norbert [1 ]
机构
[1] Univ Luxembourg, Math Res Unit, L-4364 Esch Sur Alzette, Luxembourg
来源
REVISTA DE LA UNION MATEMATICA ARGENTINA | 2019年 / 60卷 / 02期
关键词
Z(2)(n)-geometry; Nuclear Frechet sheaves; Sheaves of differential operators; ALGEBRA; FIELDS;
D O I
10.33044/revuma.v60n2a21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the function sheaf of a Z(2)(n)-manifold is a nuclear Frechet sheaf of Z(2)(n)-graded Z(2)(n)-commutative associative unital algebras. Further, we prove that the components of the pullback sheaf morphism of a Z(2)(n-)morphism are all continuous. These results are essential for the existence of categorical products in the category of Z(2)(n)-manifolds. All proofs are self-contained and explicit.
引用
收藏
页码:611 / 636
页数:26
相关论文
共 24 条
[1]   Z2 x Z2 generalizations of N=2 super Schrodinger algebras and their representations [J].
Aizawa, N. ;
Segar, J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
[2]   Z2 x Z2-graded Lie symmetries of the Levy-Leblond equations [J].
Aizawa, N. ;
Kuznetsova, Z. ;
Tanaka, H. ;
Toppan, F. .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (12)
[3]  
Aizawa N., 2019, J MATH PHYS, V60
[4]  
Aizawa N., 2016, PROG THEOR EXP PHYS
[5]  
[Anonymous], 2007, P 5 INT C HELD U ATH, V427
[6]   Tensor gauge fields in arbitrary representations of GL(D,R).: Duality and Poincare lemma [J].
Bekaert, X ;
Boulanger, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 245 (01) :27-67
[7]  
Carmeli C, 2011, EMS SER LECT MATH, P1, DOI 10.4171/097
[8]  
Chatzistavrakidis A., 2017, J HIGH ENERGY PHYS, V70
[9]  
Covolo T., 2014, ARXIV14082755MATHDC
[10]  
Covolo T, 2016, ARXIV160800949MATHDG