Multi-Scale Object Histogram Distance for LCCD Using Bi-Temporal Very-High-Resolution Remote Sensing Images

被引:13
作者
Lv, ZhiYong [1 ,2 ]
Liu, TongFei [1 ]
Benediktsson, Jon Atli [3 ]
Lei, Tao [4 ]
Wan, YiLiang [2 ,5 ]
机构
[1] XiAn Univ Technol, Sch Comp Sci & Engn, Xian 710048, Shaanxi, Peoples R China
[2] Key Lab Geospatial Big Data Min & Applicat, Changsha 410081, Hunan, Peoples R China
[3] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
[4] Shaanxi Univ Sci & Technol, Sch Elect & Informat Engn, Xian 710021, Shaanxi, Peoples R China
[5] Hunan Normal Univ, Coll Resources & Environm Sci, Changsha 410081, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
land use and land cover; remote sensing application; detection algorithm; histogram distance; CHANGE-DETECTION ALGORITHMS; COVER CHANGE DETECTION; CLASSIFICATION; PIXEL; UNCERTAINTY; FRAMEWORK; SCALE;
D O I
10.3390/rs10111809
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To improve the performance of land-cover change detection (LCCD) using remote sensing images, this study utilises spatial information in an adaptive and multi-scale manner. It proposes a novel multi-scale object histogram distance (MOHD) to measure the change magnitude between bi-temporal remote sensing images. Three major steps are related to the proposed MOHD. Firstly, multi-scale objects for the post-event image are extracted through a widely used algorithm called the fractional net evaluation approach. The pixels within a segmental object are taken to construct the pairwise frequency distribution histograms. An arithmetic frequency-mean feature is then defined from the red, green and blue band histogram. Secondly, bin-to-bin distance is adapted to measure the change magnitude between the pairwise objects of bi-temporal images. The change magnitude image (CMI) of the bi-temporal images can be generated through object-by-object. Finally, the classical binary method Otsu is used to divide the CMI to a binary change detection map. Experimental results based on two real datasets with different land-cover change scenes demonstrate the effectiveness of the proposed MOHD approach in detecting land-cover change compared with three widely used existing approaches.
引用
收藏
页数:14
相关论文
共 43 条
[1]   A Statistical Framework for Near-Real Time Detection of Beetle Infestation in Pine Forests Using MODIS Data [J].
Anees, A. ;
Aryal, J. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (10) :1717-1721
[2]   A Relative Density Ratio-Based Framework for Detection of Land Cover Changes in MODIS NDVI Time Series [J].
Anees, Asim ;
Aryal, Jagannath ;
O'Reilly, Malgorzata M. ;
Gale, Timothy J. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (08) :3359-3371
[3]   Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images [J].
Ardila, Juan P. ;
Tolpekin, Valentyn A. ;
Bijker, Wietske ;
Stein, Alfred .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (06) :762-775
[4]   Object based image analysis for remote sensing [J].
Blaschke, T. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) :2-16
[5]   Geographic Object-Based Image Analysis - Towards a new paradigm [J].
Blaschke, Thomas ;
Hay, Geoffrey J. ;
Kelly, Maggi ;
Lang, Stefan ;
Hofmann, Peter ;
Addink, Elisabeth ;
Feitosa, Raul Queiroz ;
van der Meer, Freek ;
van der Werff, Harald ;
van Coillie, Frieke ;
Tiede, Dirk .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 87 :180-191
[6]   Automatic analysis of the difference image for unsupervised change detection [J].
Bruzzone, L ;
Prieto, DF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03) :1171-1182
[7]   Object-oriented change detection method based on adaptive multi-method combination for remote-sensing images [J].
Cai, Liping ;
Shi, Wenzhong ;
Zhang, Hua ;
Hao, Ming .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (22) :5457-5471
[8]   Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering [J].
Celik, Turgay .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) :772-776
[9]   Digital change detection methods in ecosystem monitoring: a review [J].
Coppin, P ;
Jonckheere, I ;
Nackaerts, K ;
Muys, B ;
Lambin, E .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (09) :1565-1596
[10]   Object-based land-cover change detection applied to Brazilian seasonal savannahs using geostatistical features [J].
de Oliveira Silveira, Eduarda Martiniano ;
de Mello, Jose Marcio ;
Acerbi Junior, Fausto Weimar ;
Tavares de Carvalho, Luis Marcelo .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (08) :2597-2619