Enhancement of grain connectivity and critical current density in the ex-situ sintered MgB2 superconductors by doping minor Cu

被引:17
作者
Cheng, Fang [1 ]
Ma, Zongqing [1 ]
Liu, Chenxi [1 ]
Li, Huijun [1 ]
Hossain, Md. Shahriar A. [2 ,3 ]
Bando, Yoshio [2 ,3 ]
Yamauchi, Yusuke [2 ,3 ]
Fatehmulla, Amanullah [4 ]
Farooq, W. Aslam [4 ]
Liu, Yongchang [1 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin Key Lab Composite & Funct Mat, Tianjin 300072, Peoples R China
[2] Univ Wollongong, AIIM, Sq Way, North Wollongong, NSW 2500, Australia
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitechton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Cu addition; Ex-situ sintering; Grain connectivity; Critical current density; REDUCTION; CARBON;
D O I
10.1016/j.jallcom.2017.08.152
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of Cu addition on the microstructure and superconducting performance of ex-situ sintered MgB2 is systemically studied. It is found that the critical current density (J(c)) of the Cu-doped sample is improved compared to the un-doped samples. In particular, the J(c) of the Cu-doped sample sintered at 900 degrees C for only 10 min is the best value at low fields. The reason is that Cu addition can obviously promote the decomposition of MgB2 <-> MgB2 + Mg, which produces more Mg that can then react with Cu, forming local Mg-Cu liquid at high temperature. The presence of this local Mg-Cu liquid can significantly enhance the migration and self-sintering of MgB2, leading to the significant improvement in the grain connectivity and J(c). Our results indicate that Cu addition is a promising method to fabricate high-performance ex-situ MgB2 bulks and wires. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1105 / 1109
页数:5
相关论文
共 36 条
[1]   MAGNETIZATION OF HARD SUPERCONDUCTORS [J].
BEAN, CP .
PHYSICAL REVIEW LETTERS, 1962, 8 (06) :250-+
[2]   Variation of pinning mechanism and enhancement of critical current density in MgB2 bulk containing self-generated coherent MgB4 impurity [J].
Cai, Qi ;
Liu, Yongchang ;
Ma, Zongqing ;
Li, Huijun ;
Yu, Liming .
APPLIED PHYSICS LETTERS, 2013, 103 (13)
[3]   Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SIC doping [J].
Dou, SX ;
Soltanian, S ;
Horvat, J ;
Wang, XL ;
Zhou, SH ;
Ionescu, M ;
Liu, HK ;
Munroe, P ;
Tomsic, M .
APPLIED PHYSICS LETTERS, 2002, 81 (18) :3419-3421
[4]   Critical temperature and carbon substitution in MgB2 prepared through the decomposition of Mg(BH4)2 [J].
Fujii, H. ;
Ozawa, K. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (12)
[5]   Improved critical current density in ex situ processed MgB2 tapes by the size reduction of grains and crystallites by high-energy ball milling [J].
Fujii, Hiroki ;
Ishitoya, Akira ;
Itoh, Shinji ;
Ozawa, Kiyoshi ;
Kitaguchi, Hitoshi .
CRYOGENICS, 2017, 82 :15-24
[6]   Effects of Cu or Ag additions on the kinetics of MgB2 phase formation in Fe-sheathed wires [J].
Grivel, J-C ;
Abrahamsen, A. ;
Bednarcik, J. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2008, 21 (03)
[7]   Microstructure and superconductivity of Cu addition MgB2 wires using Mg2Cu compound as additional source material [J].
Hishinuma, Y. ;
Kikuchi, A. ;
Iijima, Y. ;
Yoshida, Y. ;
Takeuchi, T. ;
Nishimura, A. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (12) :1269-1273
[8]   Effect of Mechanical Alloying on the Microstructure and Properties of C-Doped MgB2 Wire by Ex-Situ Process [J].
Hwang, Soo Min ;
Choi, Jun Hyuk ;
Lee, Chang Min ;
Park, Eui Cheol ;
Lim, Jun Hyung ;
Joo, Jinho ;
Kang, Won Nam ;
Kim, Chan-Joong .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) :2710-2713
[9]   Single-crystalline superconducting MgB2 nanowires [J].
Jha, Alok K. ;
Khare, Neeraj .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2009, 22 (07)
[10]   Influence of boron powder purification on the connectivity of bulk MgB2 [J].
Jiang, J. ;
Senkowicz, B. J. ;
Larbalestier, D. C. ;
Hellstrom, E. E. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (08) :L33-L36