Towards stable Na-rich layered transition metal oxides for high energy density sodium-ion batteries

被引:44
作者
Do, Joongyeop [1 ]
Kim, Inkyung [1 ]
Kim, Heejin [2 ]
Jung, Yousung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Basic Sci Inst, Div Analyt Sci, 169-148 Gwahak Ro, Daejeon 34133, South Korea
关键词
Sodium batteries; Cathode; Oxygen redox; Density functional theory; ANIONIC REDOX CHEMISTRY; CRYSTAL-STRUCTURES; DESIGN; EXCESS; PHASE; PERFORMANCE; STABILITY; CATHODES; VOLTAGE; POINTS;
D O I
10.1016/j.ensm.2019.10.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
While reversible oxygen redox reactions in transition metal (TM) oxides offer new opportunities to increase the energy density of sodium-ion batteries, performance degradations during the electrochemical cycles due to the metal migration and oxygen loss are the major bottleneck to overcome. Herein, we address this stability issue of the Na-rich layered TM oxide, Na2MO3 (M = 3d, 4d, and 5d TMs and post-TMs), using first-principles calculations for new stable high-energy density electrode materials. We consider thermodynamic stability, oxygen release, decomposition, TM migration, and operating voltage of 38 Na2MO3 compounds, from which eight TMs (Tc, Ru, Rh, W, Ir, PL Mo, and Pd) emerge as significant candidates as the stable Na2MO3 cathode with energy densities of up to 747 W h kg(-1). The key factor that controls the stability of all of these compounds is revealed to be the well-defined phase transformation behavior during electrochemistry with specific cation-vacancy orderings. The new mechanism and several promising Na2MO3 type electrode candidates identified here should be tested experimentally.
引用
收藏
页码:62 / 69
页数:8
相关论文
共 72 条
[1]   Oxygen Redox Promoted by Na Excess and Covalency in Hexagonal and Monoclinic Na2-xRuO3 Polymorphs [J].
Assadi, M. H. N. ;
Okubo, Masashi ;
Yamada, Atsuo ;
Tateyama, Yoshitaka .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (03) :A5343-A5348
[2]   Oxygen redox in hexagonal layered NaxTMO3 (TM=4d elements) for high capacity Na ion batteries [J].
Assadi, M. H. N. ;
Okubo, Masashi ;
Yamada, Atsuo ;
Tateyama, Yoshitaka .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (08) :3747-3753
[3]   High- performance Na ion cathodes based on the ubiquitous and reversible O redox reaction [J].
Assadi, M. Hussein N. ;
Fronzi, Marco ;
Ford, Mike ;
Shigeta, Yasuteru .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (47) :24120-24127
[4]   Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes [J].
Assat, Gaurav ;
Foix, Dominique ;
Delacourt, Charles ;
Iadecola, Antonella ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
NATURE COMMUNICATIONS, 2017, 8
[5]   High-throughput computational design of cathode coatings for Li-ion batteries [J].
Aykol, Muratahan ;
Kim, Soo ;
Hegde, Vinay I. ;
Snydacker, David ;
Lu, Zhi ;
Hao, Shiqiang ;
Kirklin, Scott ;
Morgan, Dane ;
Wolverton, C. .
NATURE COMMUNICATIONS, 2016, 7
[6]   Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na2/3Mn1-yZnyO2 (0 < y < 0.23) [J].
Bai, Xue ;
Sathiya, Mariyappan ;
Mendoza-Sanchez, Beatriz ;
Iadecola, Antonella ;
Vergnet, Jean ;
Dedryvere, Remi ;
Saubanere, Matthieu ;
Abakumov, Artem M. ;
Rozier, Patrick ;
Tarascon, Jean-Marie .
ADVANCED ENERGY MATERIALS, 2018, 8 (32)
[7]  
Barin I., 1989, THERMOCHEMICAL DATA, Vvol. 304
[8]   Unified picture of anionic redox in Li/Na-ion batteries [J].
Ben Yahia, Mouna ;
Vergnet, Jean ;
Saubanere, Matthieu ;
Doublet, Marie-Liesse .
NATURE MATERIALS, 2019, 18 (05) :496-+
[9]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[10]   Application of first-principles calculations to the design of rechargeable Li-batteries [J].
Ceder, G ;
Aydinol, MK ;
Kohan, AF .
COMPUTATIONAL MATERIALS SCIENCE, 1997, 8 (1-2) :161-169