Defect Detection in Solid-State Battery Electrolytes Using Lock-In Thermal Imaging

被引:9
作者
Sulas, Dana B. [1 ]
Johnston, Steve [1 ]
Seitzman, Natalie [1 ,2 ]
Platt, Heather [3 ]
Al-Jassim, Mowafak [1 ]
Guthrey, Harvey [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Colorado Sch Mines, Golden, CO 80401 USA
[3] Solid Power, Louisville, CO 80027 USA
关键词
INTERNAL TEMPERATURE ESTIMATION; LITHIUM-ION BATTERIES; IMPEDANCE; TOMOGRAPHY; CELL;
D O I
10.1149/2.0131814jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Defective regions in battery materials often generate excess or non-uniform heat profiles during operation. Here, we discuss lock-in thermography as a high-sensitivity, spatially-resolved, and non-destructive technique to characterize defects and guide the targeted optimization of new battery materials and cell designs. As an example, we thermally image all-solid-state cells with beta-Li3PS4 electrolyte, showing point-like heat signatures that correlate with cell breakdown. Based on the current/voltage cycling characteristics and electrochemical impedance spectroscopy, we attribute heating at the breakdown sites primarily to resistive current flow through dendrites. To assist in enabling wider application of lock-in thermography to emerging battery materials, we discuss several parameters necessary to optimize this technique, including the influences of surface thermal emissivity, thermal diffusivity, and lock-in modulation frequency. (c) The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.
引用
收藏
页码:A3205 / A3211
页数:7
相关论文
共 29 条
[1]  
[Anonymous], 2010, Lock-in thermography : basics and use for evaluating electronic devices and materials. 2nd ed, Springer series in advanced microelectronics
[2]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[3]  
Beelen H. P. G. J., 2015, IFAC - Papers Online, V48, P383, DOI 10.1016/j.ifacol.2015.10.055
[4]   Lock-in thermography with depth resolution on silicon solar cells [J].
Breitenstein, O. ;
Straube, H. ;
Iwig, K. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 185 :66-74
[5]   In-operando high-speed tomography of lithium-ion batteries during thermal runaway [J].
Finegan, Donal P. ;
Scheel, Mario ;
Robinson, James B. ;
Tjaden, Bernhard ;
Hunt, Ian ;
Mason, Thomas J. ;
Millichamp, Jason ;
Di Michiel, Marco ;
Offer, Gregory J. ;
Hinds, Gareth ;
Brett, Dan J. L. ;
Shearing, Paul R. .
NATURE COMMUNICATIONS, 2015, 6
[6]   Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery [J].
Forgez, Christophe ;
Do, Dinh Vinh ;
Friedrich, Guy ;
Morcrette, Mathieu ;
Delacourt, Charles .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2961-2968
[7]   Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface [J].
Fu, Kun ;
Gong, Yunhui ;
Liu, Boyang ;
Zhu, Yizhou ;
Xu, Shaomao ;
Yao, Yonggang ;
Luo, Wei ;
Wang, Chengwei ;
Lacey, Steven D. ;
Dai, Jiaqi ;
Chen, Yanan ;
Mo, Yifei ;
Wachsman, Eric ;
Hu, Liangbing .
SCIENCE ADVANCES, 2017, 3 (04)
[8]   Effect of Processing Conditions of 75Li2S-25P2S5 Solid Electrolyte on its DC Electrochemical Behavior [J].
Garcia-Mendez, Regina ;
Mizuno, Fuminori ;
Zhang, Ruigang ;
Arthur, Timothy S. ;
Sakamoto, Jeff .
ELECTROCHIMICA ACTA, 2017, 237 :144-151
[9]  
Han F., 2018, ADV ENERGY MAT, V8
[10]   Review-Practical Challenges Hindering the Development of Solid State Li Ion Batteries [J].
Kerman, Kian ;
Luntz, Alan ;
Viswanathan, Venkatasubramanian ;
Chiang, Yet-Ming ;
Chen, Zhebo .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) :A1731-A1744