Merging data curation and machine learning to improve nanomedicines

被引:53
作者
Chen, Chen [1 ,2 ]
Yaari, Zvi [1 ]
Apfelbaum, Elana [3 ]
Grodzinski, Piotr [4 ]
Shamay, Yosi [5 ]
Heller, Daniel A. [1 ,2 ,3 ]
机构
[1] Mem Sloan Kettering Canc Ctr, New York, NY 10065 USA
[2] Mem Sloan Kettering Canc Ctr, Triinst PhD Program Chem Biol, New York, NY 10065 USA
[3] Cornell Univ, Dept Pharmacol, Weill Cornell Med, New York, NY 10065 USA
[4] NCI, Nanodelivery Syst & Devices Branch, NIH, Bethesda, MD 20892 USA
[5] Technion Israel Inst Technol, Dept Biomed Engn, Haifa, Israel
关键词
Nanotechnology; Artificial intelligence; Nanoparticles; data mining; Cancer therapeutics; Particle characterization; Data curation; PROTEIN CORONA; COLLOIDAL STABILITY; NANOPARTICLES; PREDICTION; SHAPE; SIZE; DELIVERY; DESIGN; NANOINFORMATICS; FORMULATION;
D O I
10.1016/j.addr.2022.114172
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Nanomedicine design is often a trial-and-error process, and the optimization of formulations and in vivo properties requires tremendous benchwork. To expedite the nanomedicine research progress, data science is steadily gaining importance in the field of nanomedicine. Recently, efforts have explored the potential to predict nanomaterials synthesis and biological behaviors via advanced data analytics. Machine learning algorithms process large datasets to understand and predict various material properties in nanomedicine synthesis, pharmacologic parameters, and efficacy. "Big data" approaches may enable even larger advances, especially if researchers capitalize on data curation methods. However, the concomitant use of data curation processes needed to facilitate the acquisition and standardization of large, heterogeneous data sets, to support advanced data analytics methods such as machine learning has yet to be leveraged. Currently, data curation and data analytics areas of nanotechnology-focused data science, or 'nanoinformatics', have been proceeding largely independently. This review highlights the current efforts in both areas and the potential opportunities for coordination to advance the capabilities of data analytics in nanomedicine.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 133 条
[1]  
accessdata, SCRIPTS
[2]   Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine [J].
Adir, Omer ;
Poley, Maria ;
Chen, Gal ;
Froim, Sahar ;
Krinsky, Nitzan ;
Shklover, Jeny ;
Shainsky-Roitman, Janna ;
Lammers, Twan ;
Schroeder, Avi .
ADVANCED MATERIALS, 2020, 32 (13)
[3]   Machine Learning for Precision Breast Cancer Diagnosis and Prediction of the Nanoparticle Cellular Internalization [J].
Alafeef, Maha ;
Srivastava, Indrajit ;
Pan, Dipanjan .
ACS SENSORS, 2020, 5 (06) :1689-1698
[4]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev-bioeng-071811-150124, 10.1146/annurev.bioeng-071811-150124]
[5]   Cheminformatics-driven discovery of polymeric micelle formulations for poorly soluble drugs [J].
Alves, Vinicius M. ;
Hwang, Duhyeong ;
Muratov, Eugene ;
Sokolsky-Papkov, Marina ;
Varlamova, Ekaterina ;
Vinod, Natasha ;
Lim, Chaemin ;
Andrade, Carolina H. ;
Tropsha, Alexander ;
Kabanov, Alexander .
SCIENCE ADVANCES, 2019, 5 (06)
[6]  
[Anonymous], About us
[7]  
[Anonymous], 2016, New Horizons for a Data-driven Economy: a Roadmap for Usage and Exploitation of Big Data in Europe
[8]  
[Anonymous], About us
[9]   Nanoparticles in the clinic: An update post COVID-19 vaccines [J].
Anselmo, Aaron C. ;
Mitragotri, Samir .
BIOENGINEERING & TRANSLATIONAL MEDICINE, 2021, 6 (03)
[10]   Response to ACS Nano Editorial "Standardizing Nanomaterials" [J].
Aublant, Jean-Marc ;
Clifford, Charles A. ;
Frejafon, Emeric ;
Fujimoto, Toshiyuki ;
Hackley, Vincent A. ;
Herrmann, Jan ;
Walker, Angela R. Hight ;
Kaiser, Debra L. ;
Koltsov, Denis K. ;
Michael, David J. ;
Ono, Akira ;
Roebben, Gert ;
Smallwood, Gregory J. ;
Taketoshi, Naoyuki .
ACS NANO, 2020, 14 (11) :14255-14257