On the inverse Kostka matrix

被引:9
作者
Duan, HB [1 ]
机构
[1] Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
关键词
Schur and monomial symmetric functions; Kostka matrix;
D O I
10.1016/S0097-3165(03)00106-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the ring of symmetric functions the inverse Kostka matrix appears as the transition matrix from the bases given by monomial symmetric functions to the Schur bases. We present both a combinatorial characterization and a recurrent formula for the entries of the inverse Kostka matrix which are different from the results obtained by Egecioglu and Remmel (Linear Multilinear Algebra 26 (1990) 59). An application to the topology of the classifying space BU(n) is obtained. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 11 条
[1]   Some enumerative formulas for flag varieties [J].
Duan, HB .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (10) :4395-4419
[2]  
EGECIOGLU O, 1990, LINEAR MULTILINEAR A, V26, P59
[3]  
KOSTKA C, 1982, J REINE ANGEW MATH, V93, P89
[4]  
KOSTKA C, 1908, WISSENSCHAFTLICHE BE
[5]   The combinatorics of Steenrod operations on the cohomology of Grassmannians [J].
Lenart, C .
ADVANCES IN MATHEMATICS, 1998, 136 (02) :251-283
[6]  
Macdonald I, 1995, SYMMETRIC FUNCTIONS, VSecond
[7]  
STEENROD NE, 1962, ANN MATH STUDIES
[8]  
WU WT, 1950, CR HEBD ACAD SCI, V230, P918
[9]  
ZHAO X, 2003, J SYMB COMPUT, V33, P507
[10]  
[No title captured]