Gas temperature and boundary layer thickness measurements of an inert mixture using filtered broadband natural species emission (Part I)

被引:9
作者
Al-Sadoon, M. [1 ]
Samimi-Abianeh, O. [1 ]
机构
[1] Wayne State Univ, Dept Mech Engn, 5050 Anthony Wayne Dr, Detroit, MI 48202 USA
关键词
Gas temperature; Broadband filtered natural emission; Boundary layer thickness; Rapid compression machine; Methane; Carbon dioxide; RAPID COMPRESSION MACHINE; LASER-ABSORPTION; SPECTROSCOPY;
D O I
10.1016/j.jqsrt.2019.106749
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new experimental methodology to simultaneously measure gas temperature and boundary layer thickness was developed and explained for the first time in this work. The new methodology is based on the line-of-sight broadband filtered natural infrared emission of species and it solves one of the main challenges of using the broadband spectroscopy to measure gas temperatures: quantification of the absorption of the core gas infrared emission due to the cold boundary layer on the optical access of combustion systems. To evaluate and validate the new methodology, it was applied to measure the gas temperature and boundary layer thickness of a mixture of methane, carbon dioxide, and nitrogen using Rapid Compression Machine RCM). High-speed infrared cameras with two filters at wavelength ranges of 3.329 to 3.629 mu m and 4.069 to 4.445 mu m were used to measure the filtered natural emission of methane and carbon dioxide during the post-compression period. Measured gas temperatures at two conditions were compared with the modeled temperature calculated using the isentropic compression equation. Excellent agreement, within 1%, was reached between modeled and measured gas temperatures. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 13 条
[1]   Identification and quantitation of oxygenates in gasoline ampules using Fourier transform near-infrared and Fourier transform Raman spectroscopy [J].
Choquette, SJ ;
Chesler, SN ;
Duewer, DL ;
Wang, SW ;
OHaver, TC .
ANALYTICAL CHEMISTRY, 1996, 68 (20) :3525-3533
[2]   Two-line thermometry and H2O measurement for reactive mixtures in rapid compression machine near 7.6 μm [J].
Das, Apurba Kumar ;
Uddi, Mruthunjaya ;
Sung, Chih-Jen .
COMBUSTION AND FLAME, 2012, 159 (12) :3493-3501
[3]   Broadband dual-frequency comb spectroscopy in a rapid compression machine [J].
Draper, Anthony D. ;
Cole, Ryan K. ;
Makowiecki, Amanda S. ;
Mohr, Jeffrey ;
Zdanowicz, Andrew ;
Marchese, Anthony ;
Hoghooghi, Nazanin ;
Rieker, Gregory B. .
OPTICS EXPRESS, 2019, 27 (08) :10814-10825
[4]   Infrared laser-absorption sensing for combustion gases [J].
Goldenstein, Christopher S. ;
Spearrin, R. Mitchell ;
Jeffries, Jay B. ;
Hanson, Ronald K. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2017, 60 :132-176
[5]   The HITRAN2016 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hill, C. ;
Kochanov, R. V. ;
Tan, Y. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V. ;
Campargue, A. ;
Chance, K. V. ;
Drouin, B. J. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Perevalov, V. I. ;
Perrin, A. ;
Shine, K. P. ;
Smith, M. -A. H. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Barbe, A. ;
Csaszar, A. G. ;
Devi, V. M. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J. -M. ;
Jolly, A. ;
Johnson, T. J. ;
Karman, T. ;
Kleiner, I. ;
Kyuberis, A. A. ;
Loos, J. ;
Lyulin, O. M. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Moazzen-Ahmadi, N. ;
Mueller, H. S. P. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Polyansky, O. L. ;
Rey, M. ;
Rotger, M. ;
Sharpe, S. W. ;
Sung, K. ;
Starikova, E. ;
Tashkun, S. A. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 :3-69
[6]   Autoignition and flame spectroscopy of propane mixture in a rapid compression machine [J].
Goyal, T. ;
Trivedi, D. ;
Abianeh, O. Samimi .
FUEL, 2018, 233 :56-67
[7]   Aerodynamics inside a rapid compression machine [J].
Mittal, G ;
Sung, CJ .
COMBUSTION AND FLAME, 2006, 145 (1-2) :160-180
[8]   Cavity-enhanced absorption sensor for carbon monoxide in a rapid compression machine [J].
Nasir, Ehson F. ;
Farooq, Aamir .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (02) :1297-1304
[9]   Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode [J].
Nasir, Ehson F. ;
Farooq, Aamir .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2017, 36 (03) :4453-4460
[10]   HITEMP, the high-temperature molecular spectroscopic database [J].
Rothman, L. S. ;
Gordon, I. E. ;
Barber, R. J. ;
Dothe, H. ;
Gamache, R. R. ;
Goldman, A. ;
Perevalov, V. I. ;
Tashkun, S. A. ;
Tennyson, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2010, 111 (15) :2139-2150