Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries

被引:152
作者
Wu, Fanglin [1 ,2 ]
Fang, Shan [1 ,2 ]
Kuenzel, Matthias [1 ,2 ]
Mullaliu, Angelo [1 ,2 ]
Kim, Jae-Kwang [3 ]
Gao, Xinpei [1 ,2 ]
Diemant, Thomas [1 ,2 ]
Kim, Guk-Tae [1 ,2 ]
Passerini, Stefano [1 ,2 ]
机构
[1] Helmholtz Inst Ulm HIU, Helmholtzstr 11, D-89081 Ulm, Germany
[2] Karlsruhe Inst Technol KIT, POB 3640, D-76021 Karlsruhe, Germany
[3] Cheongju Univ, Dept Solar & Energy Engn, Cheongju 28503, Chungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
PERFORMANCE; LINI0.8CO0.1MN0.1O2; COPRECIPITATION; STABILITY; DISORDER; OXIDE;
D O I
10.1016/j.joule.2021.06.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-energy-density lithium-metal batteries face the challenge of developing functional electrolytes enabling both the stabilization of the lithium-metal negative electrode and high-voltage positive electrodes (> 4 V versus Li+/Li). Herein, a low-volatility and non-flammable ionic liquid electrolyte (ILE) incorporating two anions, bis(fluorosulfonyl) imide (FSI) and bis(trifluoromethanesulfonyl) imide (TFSI), is successfully applied to overcome this challenge, employing the high-energy, low-Co, and Ni-rich positive-electrode material, LiNi0.88Co0.09Mn0.03O2 (NCM88), in Li-metal batteries. With this specific electrolyte, the cathode exhibits remarkable electrochemical performance, achieving an initial specific capacity of 214 mAh g(-1) and outstanding capacity retention of 88% over 1,000 cycles. More importantly, this electrolyte enables an average Coulombic efficiency of 99.94%. The excellent compatibility of the dual-anion ILE with both the lithium metal (50 mu m) and the highvoltage positive- electrode material enables the realization of Li-metal cells achieving specific energies of more than 560 Wh kg(-1) based on their combined active material masses.
引用
收藏
页码:2177 / 2194
页数:18
相关论文
共 40 条
[1]   Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Pollard, Travis P. ;
Wang, Xuefeng ;
Lee, Jungwoo Z. ;
Zhang, Minghao ;
Wynn, Thomas ;
Ding, Michael ;
Borodin, Oleg ;
Meng, Ying Shirley ;
Xu, Kang .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :780-794
[2]   Probing Li-Ni Cation Disorder in Li1-xNi1+x-yAlyO2 Cathode Materials by Neutron Diffraction [J].
Cai, Lu ;
Liu, Zengcai ;
An, Ke ;
Liang, Chengdu .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) :A924-A928
[3]   Decreasing Li/Ni Disorder and Improving the Electrochemical Performances of Ni-Rich LiNi0.8Co0.1Mn0.1O2 by Ca Doping [J].
Chen, Minmin ;
Zhao, Enyue ;
Chen, Dongfeng ;
Wu, Meimei ;
Han, Songbai ;
Huang, Qingzhen ;
Yang, Limei ;
Xiao, Xiaoling ;
Hu, Zhongbo .
INORGANIC CHEMISTRY, 2017, 56 (14) :8355-8362
[4]   High-performance ZrO2-coated LiNiO2 cathode material [J].
Cho, J ;
Kim, TJ ;
Kim, YJ ;
Park, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A159-A161
[5]   Recent Progress and Perspective of Advanced High-Energy Co-Less Ni-Rich Cathodes for Li-Ion Batteries: Yesterday, Today, and Tomorrow [J].
Choi, Ji Ung ;
Voronina, Natalia ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
ADVANCED ENERGY MATERIALS, 2020, 10 (42)
[6]   Phase Transformation Behavior and Stability of LiNiO2 Cathode Material for Li-Ion Batteries Obtained from InSitu Gas Analysis and Operando X-Ray Diffraction [J].
de Biasi, Lea ;
Schiele, Alexander ;
Roca-Ayats, Maria ;
Garcia, Grecia ;
Brezesinski, Torsten ;
Hartmann, Pascal ;
Janek, Juergen .
CHEMSUSCHEM, 2019, 12 (10) :2240-2250
[7]   Enhancing the Thermal and Upper Voltage Performance of Ni-Rich Cathode Material by a Homogeneous and Facile Coating Method: Spray-Drying Coating with Nano-Al2O3 [J].
Du, Ke ;
Xie, Hongbin ;
Hu, Guorong ;
Peng, Zhongdong ;
Cao, Yanbing ;
Yu, Fan .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (27) :17713-17720
[8]   High-Energy Nickel-Rich Layered Cathode Stabilized by Ionic Liquid Electrolyte [J].
Heist, Ashley ;
Hafner, Simon ;
Lee, Se-Hee .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (06) :A873-A879
[9]   Comparison of AlPO4- and Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode materials for Li-ion battery [J].
Hu, Guo-Rong ;
Deng, Xin-Rong ;
Peng, Zhong-Dong ;
Du, Ke .
ELECTROCHIMICA ACTA, 2008, 53 (05) :2567-2573
[10]   Well-ordered spherical LiNixCo(1-2x)MnxO2 cathode materials synthesized from cobolt concentration-gradient precursors [J].
Huang, Zhenlei ;
Gao, Jian ;
He, Xiangming ;
Li, Jianjun ;
Jiang, Changyin .
JOURNAL OF POWER SOURCES, 2012, 202 :284-290