Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibility

被引:22
作者
Stiglic, Andreja Dobaj [1 ]
Gurer, Fazilet [1 ]
Lackner, Florian [2 ,10 ]
Bracic, Doris [1 ]
Winter, Armin [3 ]
Gradisnik, Lidija [4 ]
Makuc, Damjan [5 ]
Kargl, Rupert [1 ,2 ,10 ]
Duarte, Isabel [6 ]
Plavec, Janez [5 ,7 ,8 ]
Maver, Uros [4 ]
Beaumont, Marco [9 ]
Kleinschek, Karin Stana [2 ,10 ]
Mohan, Tamilselvan [1 ,2 ,10 ]
机构
[1] Univ Maribor, Lab Characterizat & Proc Polymers, Fac Mech Engn, Smetanova Ulica 17, Maribor 2000, Slovenia
[2] Graz Univ Technol, Inst Chem & Technol Biobased Syst IBioSys, Stremayrgasse 9, A-8010 Graz, Austria
[3] Univ Nat Resources & Life Sci, BOKU, Inst Wood Technol & Renewable Mat, Konrad Lorenz Str 24, A-3430 Tulln, Austria
[4] Univ Maribor, Inst Biomed Sci, Fac Med, Taborska Ulica 8, Maribor 2000, Slovenia
[5] Slovenian NMR Ctr, Natl Inst Chem, Hajdrihova 19, Ljubljana 1001, Slovenia
[6] Univ Aveiro, Dept Mech Engn, Ctr Mech Technol & Automat, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[7] EN FIST Ctr Excellence, Trg 13, Ljubljana 1000, Slovenia
[8] Univ Ljubljana, Fac Chem & Chem Technol, Vecna pot 113, Ljubljana 1000, Slovenia
[9] Univ Nat Resources & Life Sci BOKU, Inst Chem Renewable Resources, Konrad Lorenz Str 24, A-3430 Tulln, Austria
[10] European Polysaccharide Network Excellence EPNOE, Leuven, Belgium
关键词
POROUS SCAFFOLD; LINKING; BONE; HYDROGELS; RELEASE; FILMS;
D O I
10.1016/j.isci.2022.104263
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Herein, we fabricated chemically cross-linked polysaccharide-based three-dimensional ( 3D) porous scaffolds using an ink composed of nanofibrillated cellulose, carboxymethyl cellulose, and citric acid (CA), featuring strong shear thinning behavior and adequate printability. Scaffolds were produced by combining direct-ink-writing 3D printing, freeze-drying, and dehydrothermal heat-assisted cross-linking techniques. The last step induces a reaction of CA. Degree of crosslinking was controlled by varying the CA concentration (2.5-10.0 wt.%) to tune the structure, swelling, degradation, and surface properties (pores: 100-450 mm, porosity: 86%) of the scaffolds in the dry and hydrated states. Compressive strength, elastic modulus, and shape recovery of the cross-linked scaffolds increased significantly with increasing cross-linker concentration. Cross-linked scaffolds promoted clustered cell adhesion and showed no cytotoxic effects as determined by the viability assay and live/dead staining with human osteoblast cells. The proposed method can be extended to all polysaccharide-based materials to develop cell-friendly scaffolds suitable for tissue engineering applications.
引用
收藏
页数:23
相关论文
共 59 条
[21]   Ultra-Low-Cost 3D Bioprinting: Modification and Application of an Off-the-Shelf Desktop 3D-Printer for Biofabrication [J].
Kahl, Melanie ;
Gertig, Markus ;
Hoyer, Phillipp ;
Friedrich, Oliver ;
Gilbert, Daniel F. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (JUL)
[22]   Citric acid cross-linking of highly porous carboxymethyl cellulose/poly(ethylene oxide) composite hydrogel films for controlled release applications [J].
Kanafi, Nafeesa Mohd ;
Rahman, Norizah Abdul ;
Rosdi, Nurul Husna .
MATERIALS TODAY-PROCEEDINGS, 2019, 7 :721-731
[23]   Development of Biomimetic Hybrid Porous Scaffold of Chitosan/Polyvinyl Alcohol/Carboxymethyl Cellulose by Freeze-Dried and Salt Leached Technique [J].
Kanimozhi, K. ;
Basha, S. Khaleel ;
Kumari, V. Sugantha ;
Kaviyarasu, K. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (07) :4916-4922
[24]   The Effect of Chemical Changes during Heat Treatment on the Color and Mechanical Properties of Fir Wood [J].
Kucerova, Viera ;
Lagana, Rastislav ;
Vybohova, Eva ;
Hyrogova, Tatiana .
BIORESOURCES, 2016, 11 (04) :9079-9094
[25]   Human Dermal Fibroblast Viability and Adhesion on Cellulose Nanomaterial Coatings: Influence of Surface Characteristics [J].
Kummala, Ruut ;
Veliz, Diosangeles Soto ;
Fang, Zhiqiang ;
Xu, Wenyang ;
Abitbol, Tiffany ;
Xu, Chunlin ;
Toivakka, Martti .
BIOMACROMOLECULES, 2020, 21 (04) :1560-1567
[26]   A green approach to obtain stable and hydrophilic cellulose-based electrospun nanofibrous substrates for sustained release of therapeutic molecules [J].
Kurecic, Manja ;
Mohan, Tamilselvan ;
Virant, Natalija ;
Maver, Uros ;
Stergar, Janja ;
Gradisnik, Lidija ;
Kleinschek, Karin Stana ;
Hribernik, Silvo .
RSC ADVANCES, 2019, 9 (37) :21288-21301
[27]   An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds [J].
Li, Guohui ;
Nandgaonkar, Avinav G. ;
Habibi, Youssef ;
Krause, Wendy E. ;
Wei, Qufu ;
Lucia, Lucian A. .
RSC ADVANCES, 2017, 7 (23) :13678-13688
[28]   Antibacterial, hemostasis, adhesive, self-healing polysaccharides-based composite hydrogel wound dressing for the prevention and treatment of postoperative adhesion [J].
Li, Hongbin ;
Wei, Xinjing ;
Yi, Xiaotong ;
Tang, Shize ;
He, Jinmei ;
Huang, Yudong ;
Cheng, Feng .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 123
[29]   Expanding sacrificially printed microfluidic channel-embedded paper devices for construction of volumetric tissue modelsin vitro [J].
Li, Hongbin ;
Cheng, Feng ;
Li, Wanlu ;
Cao, Xia ;
Wang, Zixuan ;
Wang, Mian ;
Robledo-Lara, Juan Antonio ;
Liao, Junlong ;
Chavez-Madero, Carolina ;
Hassan, Shabir ;
Xie, Jingwei ;
Trujillo-de Santiago, Grissel ;
Alvarez, Mario Moises ;
He, Jinmei ;
Zhang, Yu Shrike .
BIOFABRICATION, 2020, 12 (04)
[30]  
Lin HY, 2012, BIO-MED MATER ENG, V22, P321, DOI [10.3233/BME-2012-0722, 10.4161/biom.22817]