Adaptive Online Learning for the Autoregressive Integrated Moving Average Models

被引:0
|
作者
Shao, Weijia [1 ]
Radke, Lukas Friedemann [1 ]
Sivrikaya, Fikret [2 ]
Albayrak, Sahin [1 ,2 ]
机构
[1] Tech Univ Berlin, Fac Elect Engn & Comp Sci, Ernst Reuter Pl 7, D-10587 Berlin, Germany
[2] GT ARC Gemeinnutzige GmbH, Ernst Reuter Pl 7, D-10587 Berlin, Germany
关键词
ARIMA model; time series analysis; online optimization; online model selection; ARMA; IDENTIFICATION;
D O I
10.3390/math9131523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper addresses the problem of predicting time series data using the autoregressive integrated moving average (ARIMA) model in an online manner. Existing algorithms require model selection, which is time consuming and unsuitable for the setting of online learning. Using adaptive online learning techniques, we develop algorithms for fitting ARIMA models without hyperparameters. The regret analysis and experiments on both synthetic and real-world datasets show that the performance of the proposed algorithms can be guaranteed in both theory and practice.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Forecasting Telecommunications Data With Autoregressive Integrated Moving Average Models
    Nalawade, Nilesh Subhash
    Pawar, Minakshee M.
    2015 2ND INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN ENGINEERING & COMPUTATIONAL SCIENCES (RAECS), 2015,
  • [2] Beta autoregressive moving average models
    Andréa V. Rocha
    Francisco Cribari-Neto
    TEST, 2009, 18 : 529 - 545
  • [3] Beta autoregressive moving average models
    Rocha, Andrea V.
    Cribari-Neto, Francisco
    TEST, 2009, 18 (03) : 529 - 545
  • [4] Vector AutoRegressive Moving Average Models: A Review
    Dueker, Marie-Christine
    Matteson, David S.
    Tsay, Ruey S.
    Wilms, Ines
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2025, 17 (01):
  • [5] The specification of vector autoregressive moving average models
    Koreisha, SG
    Pukkila, T
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 547 - 565
  • [6] Using nonstationary season autoregressive integrated moving average models in resource saving problems
    R. R. Akhmetyanov
    L. A. Delegodina
    N. P. Kopylova
    B. N. Lutsenko
    G. M. Sobstel
    G. P. Cheido
    Optoelectronics, Instrumentation and Data Processing, 2008, 44 (4) : 306 - 316
  • [7] The Kernel Adaptive Autoregressive-Moving-Average Algorithm
    Li, Kan
    Principe, Jose C.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (02) : 334 - 346
  • [8] Unit-Weibull autoregressive moving average models
    Guilherme Pumi
    Taiane Schaedler Prass
    Cleiton Guollo Taufemback
    TEST, 2024, 33 : 204 - 229
  • [9] Adaptive Autoregressive Moving Average Models and Its Possibilities for Identification and Control of Machines Dynamic Systems
    Leitner, B.
    Uricek, J.
    TRANSPORT MEANS 2009, 2009, : 77 - 81