Bootstrap unit root test based on least absolute deviation estimation under dependence assumptions

被引:1
作者
Yang, Xiaorong [1 ]
机构
[1] Zhejiang Gongshang Univ, Coll Stat & Math, Hangzhou 310018, Peoples R China
基金
国家教育部科学基金资助;
关键词
least absolute deviation; unit root; bootstrap; dependent random variables; autoregressive processes; 60F05; 62F40; WEAK-CONVERGENCE; STOCHASTIC INTEGRALS; MOMENT INEQUALITIES; ASYMPTOTIC THEORY; LIMIT THEORY;
D O I
10.1080/02664763.2014.999652
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a bootstrap test based on the least absolute deviation (LAD) estimation for the unit root test in first-order autoregressive models with dependent residuals is considered. The convergence in probability of the bootstrap distribution function is established. Under the frame of dependence assumptions, the asymptotic behavior of the bootstrap LAD estimator is independent of the covariance matrix of the residuals, which automatically approximates the target distribution.
引用
收藏
页码:1332 / 1347
页数:16
相关论文
共 27 条
[1]   AN IMPROVED HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX ESTIMATOR [J].
ANDREWS, DWK ;
MONAHAN, JC .
ECONOMETRICA, 1992, 60 (04) :953-966
[2]   BOOTSTRAP TEST OF SIGNIFICANCE AND SEQUENTIAL BOOTSTRAP ESTIMATION FOR UNSTABLE 1ST ORDER AUTOREGRESSIVE PROCESSES [J].
BASAWA, IV ;
MALLIK, AK ;
MCCORMICK, WP ;
REEVES, JH ;
TAYLOR, RL .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (03) :1015-1026
[3]   ASYMPTOTIC THEORY OF LEAST ABSOLUTE ERROR REGRESSION [J].
BASSETT, G ;
KOENKER, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (363) :618-622
[4]  
Bloomfield P., 1983, PROGR PROBABILITY ST, V6
[5]   M-estimators with non-standard rates of convergence and weakly dependent data [J].
Caner, M .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (04) :1207-1219
[6]   DISTRIBUTION OF THE ESTIMATORS FOR AUTOREGRESSIVE TIME-SERIES WITH A UNIT ROOT [J].
DICKEY, DA ;
FULLER, WA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (366) :427-431
[7]  
Gallant A. R., 1988, A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models
[8]   CONVERGENCE TO STOCHASTIC INTEGRALS FOR DEPENDENT HETEROGENEOUS PROCESSES [J].
HANSEN, BE .
ECONOMETRIC THEORY, 1992, 8 (04) :489-500
[10]  
Heyde ChristopherC., 1980, Martingale Limit Theory and Its Application, Probability and mathematical statistics