Implications for the PET decomposition mechanism through similarity and dissimilarity between PETases from Rhizobacter gummiphilus and Ideonella sakaiensis

被引:61
作者
Sagong, Hye-Young [1 ,2 ]
Son, Hyeoncheol Francis [1 ,2 ]
Seo, Hogyun [1 ,3 ]
Hong, Hwaseok [1 ,2 ]
Lee, Donghoon [1 ,2 ]
Kim, Kyung-Jin [1 ,2 ]
机构
[1] Kyungpook Natl Univ, Sch Life Sci, BK21 FOUR KNU Creat BioRes Grp, Daegu 41566, South Korea
[2] Kyungpook Natl Univ, KNU Inst Microorganisms, Daegu 41566, South Korea
[3] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang, South Korea
基金
新加坡国家研究基金会;
关键词
Polyethylene terephthalate; Enzyme; Environmental degradation; Molecular structure; Surface charge; CUTINASE-CATALYZED HYDROLYSIS; POLYETHYLENE TEREPHTHALATE; DEGRADATION; POLY(ETHYLENE-TEREPHTHALATE); DEGRADES; BACTERIUM; ENZYMES; POLYETHYLENETEREPHTHALATE; HYDROLASE; FUSION;
D O I
10.1016/j.jhazmat.2021.126075
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of a superb polyethylene terephthalate (PET) hydrolyzing enzyme requires an accurate understanding of the PET decomposition mechanism. However, studies on PET degrading enzymes, including the PET hydrolase from Ideonella sakaiensis (IsPETase), have not provided sufficient knowledge of the molecular mechanisms for the hardly accessible substrate. Here, we report a novel PET hydrolase from Rhizobacter gummiphilus (RgPETase), which has a hydrolyzing activity similar to IsPETase toward microcrystalline PET but distinct behavior toward low crystallinity PET film. Structural analysis of RgPETase reveals that the enzyme shares the key structural features of IsPETase for high PET hydrolysis activity but has distinguished structures at the surface-exposed regions. RgPETase shows a unique conformation of the wobbling tryptophan containing loop (WW-loop) and change of the electrostatic surface charge on the loop dramatically affects the PET-degrading activity. We further show that effect of the electrostatic surface charge to the activity varies depending on locations. This work provides valuable information underlying the uncovered PET decomposition mechanism.
引用
收藏
页数:7
相关论文
共 39 条
  • [1] Characterization and engineering of a plastic-degrading aromatic polyesterase
    Austin, Harry P.
    Allen, Mark D.
    Donohoe, Bryon S.
    Rorrer, Nicholas A.
    Kearns, Fiona L.
    Silveira, Rodrigo L.
    Pollard, Benjamin C.
    Dominick, Graham
    Duman, Ramona
    El Omari, Kamel
    Mykhaylyk, Vitaliy
    Wagner, Armin
    Michener, William E.
    Amore, Antonella
    Skaf, Munir S.
    Crowley, Michael F.
    Thorne, Alan W.
    Johnson, Christopher W.
    Woodcock, H. Lee
    McGeehan, John E.
    Beckham, Gregg T.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (19) : E4350 - E4357
  • [2] Accumulation and fragmentation of plastic debris in global environments
    Barnes, David K. A.
    Galgani, Francois
    Thompson, Richard C.
    Barlaz, Morton
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2009, 364 (1526) : 1985 - 1998
  • [3] Surface engineering of polyester-degrading enzymes to improve efficiency and tune specificity
    Biundo, Antonino
    Ribitsch, Doris
    Guebitz, Georg M.
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 102 (08) : 3551 - 3559
  • [4] Degradation Rates of Plastics in the Environment
    Chamas, Ali
    Moon, Hyunjin
    Zheng, Jiajia
    Qiu, Yang
    Tabassum, Tarnuma
    Jang, Jun Hee
    Abu-Omar, Mandi
    Scott, Susannah L.
    Suh, Sangwon
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (09) : 3494 - 3511
  • [5] Structural studies reveal the molecular mechanism of PETase
    Chen, Chun-Chi
    Han, Xu
    Ko, Tzu-Ping
    Liu, Weidong
    Guo, Rey-Ting
    [J]. FEBS JOURNAL, 2018, 285 (20) : 3717 - 3723
  • [6] Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy
    Cui, Yinglu
    Chen, Yanchun
    Liu, Xinyue
    Dong, Saijun
    Tian, Yu'e
    Qiao, Yuxin
    Mitra, Ruchira
    Han, Jing
    Li, Chunli
    Han, Xu
    Liu, Weidong
    Chen, Quan
    Wei, Wangqing
    Wang, Xin
    Du, Wenbin
    Tang, Shuangyan
    Xiang, Hua
    Liu, Haiyan
    Liang, Yong
    Houk, Kendall N.
    Wu, Bian
    [J]. ACS CATALYSIS, 2021, 11 (03) : 1340 - 1350
  • [7] A novel process for poly(ethylene terephthalate) depolymerization via enzyme-catalyzed glycolysis
    de Castro, Aline Machado
    Carniel, Adriano
    [J]. BIOCHEMICAL ENGINEERING JOURNAL, 2017, 124 : 64 - 68
  • [8] Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules
    Eberl, Anita
    Heumann, Sonja
    Brueckner, Tina
    Araujo, Rita
    Cavaco-Paulo, Artur
    Kaufmann, Franz
    Kroutil, Wolfgang
    Guebitz, Georg M.
    [J]. JOURNAL OF BIOTECHNOLOGY, 2009, 143 (03) : 207 - 212
  • [9] Active Site Flexibility as a Hallmark for Efficient PET Degradation by I-sakaiensis PETase
    Fecker, Tobias
    Galaz-Davison, Pablo
    Engelberger, Felipe
    Narui, Yoshie
    Sotomayor, Marcos
    Parra, Loreto P.
    Ramirez-Sarmiento, Cesar A.
    [J]. BIOPHYSICAL JOURNAL, 2018, 114 (06) : 1302 - 1312
  • [10] Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches
    Furukawa, Makoto
    Kawakami, Norifumi
    Tomizawa, Atsushi
    Miyamoto, Kenji
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)