Exploiting the Functional and Taxonomic Structure of Genomic Data by Probabilistic Topic Modeling

被引:13
作者
Chen, Xin [1 ]
Hu, Xiaohua [1 ]
Lim, Tze Y. [2 ]
Shen, Xiajiong [3 ]
Park, E. K. [4 ]
Rosen, Gail L. [5 ]
机构
[1] Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA 19104 USA
[2] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA
[3] Henan Univ, Coll Comp & Informat Engn, Kaifeng, Henan, Peoples R China
[4] Calif State Univ Chico, Chico, CA 95929 USA
[5] Drexel Univ, Dept Elect & Comp Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Data mining; bioinformatics (genome or protein) databases; language models; metagenomics; CLASSIFICATION; MICROBIOTA;
D O I
10.1109/TCBB.2011.113
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, we present a method that enable both homology-based approach and composition-based approach to further study the functional core (i.e., microbial core and gene core, correspondingly). In the proposed method, the identification of major functionality groups is achieved by generative topic modeling, which is able to extract useful information from unlabeled data. We first show that generative topic model can be used to model the taxon abundance information obtained by homology-based approach and study the microbial core. The model considers each sample as a "document," which has a mixture of functional groups, while each functional group (also known as a "latent topic") is a weight mixture of species. Therefore, estimating the generative topic model for taxon abundance data will uncover the distribution over latent functions (latent topic) in each sample. Second, we show that, generative topic model can also be used to study the genome-level composition of "N-mer" features (DNA subreads obtained by composition-based approaches). The model consider each genome as a mixture of latten genetic patterns (latent topics), while each functional pattern is a weighted mixture of the "N-mer" features, thus the existence of core genomes can be indicated by a set of common N-mer features. After studying the mutual information between latent topics and gene regions, we provide an explanation of the functional roles of uncovered latten genetic patterns. The experimental results demonstrate the effectiveness of proposed method.
引用
收藏
页码:980 / 991
页数:12
相关论文
共 27 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]  
Aso Tatsuya, 2009, Genome Inform, V23, P3
[3]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[4]  
Brady A, 2009, NAT METHODS, V6, P673, DOI [10.1038/nmeth.1358, 10.1038/NMETH.1358]
[5]   The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases [J].
Caspi, Ron ;
Altman, Tomer ;
Dale, Joseph M. ;
Dreher, Kate ;
Fulcher, Carol A. ;
Gilham, Fred ;
Kaipa, Pallavi ;
Karthikeyan, Athikkattuvalasu S. ;
Kothari, Anamika ;
Krummenacker, Markus ;
Latendresse, Mario ;
Mueller, Lukas A. ;
Paley, Suzanne ;
Popescu, Liviu ;
Pujar, Anuradha ;
Shearer, Alexander G. ;
Zhang, Peifen ;
Karp, Peter D. .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D473-D479
[6]   What makes pathogens pathogenic [J].
Ehrlich, Garth D. ;
Hiller, N. Luisa ;
Hu, Fen Ze .
GENOME BIOLOGY, 2008, 9 (06)
[7]  
FEIFEI L, 2005, P IEEE CS C COMP VIS
[8]   A latent variable model for chemogenomic profiling [J].
Flaherty, P ;
Giaever, G ;
Kumm, J ;
Jordan, MI ;
Arkin, AP .
BIOINFORMATICS, 2005, 21 (15) :3286-3293
[9]  
Gadia V., 2008, P IEEE INT WORKSH BI
[10]  
Gerber G. K., 2007, HIERARCHICAL DIRICHL