Rigidity Results for Elliptic PDEs with Uniform Limits: an Abstract Framework with Applications

被引:20
作者
Farina, Alberto [1 ]
Valdinoci, Enrico [2 ]
机构
[1] Univ Picardie Jules Verne, LAMFA CNRS UMR 6140, Fac Sci, Amiens, France
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
elliptic PDEs; fractional or nonlinear operators; symmetry results; ONE-DIMENSIONAL SYMMETRY; DIRICHLET-NEUMANN OPERATORS; GRAVITY-WAVES; WATER-WAVES; EQUATIONS; ANALYTICITY; MODEL;
D O I
10.1512/iumj.2011.60.4433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an abstract framework for a symmetry result arising in a conjecture of G.W. Gibbons and we apply it to the fractional Laplace operator, to the elliptic operators with constant coefficients, to the quasilinear operators, and to elliptic fully nonlinear operators with possible gradient dependence.
引用
收藏
页码:121 / 141
页数:21
相关论文
共 73 条
[41]  
Farina A., 2003, Adv. Math. Sci. Appl., V13, P65
[42]  
Farina A., 2009, RECENT PROGR REACTIO, P74
[43]   1D SYMMETRY FOR SOLUTIONS OF SEMILINEAR AND QUASILINEAR ELLIPTIC EQUATIONS [J].
Farina, Alberto ;
Valdinoci, Enrico .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (02) :579-609
[44]  
Farina A, 2008, ANN SCUOLA NORM-SCI, V7, P741
[45]  
Fefferman C., 1986, I. Rev. Mat. Iberoamer., V2, P119
[46]   Geometric PDEs in the Grushin Plane: Weighted Inequalities and Flatness of Level Sets [J].
Ferrari, Fausto ;
Valdinoci, Enrico .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (22) :4232-4270
[47]   A geometric inequality in the Heisenberg group and its applications to stable solutions of semilinear problems [J].
Ferrari, Fausto ;
Valdinoci, Enrico .
MATHEMATISCHE ANNALEN, 2009, 343 (02) :351-370
[48]   Dirichlet-to-Neumann map for three-dimensional elastic waves [J].
Gächter, GK ;
Grote, MJ .
WAVE MOTION, 2003, 37 (03) :293-311
[49]   Bogomol'nyi equation for intersecting domain walls [J].
Gibbons, GW ;
Townsend, PK .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1727-1730
[50]  
Gilbarg D., 1983, Elliptic Partial Equations of Second Order, V2nd