Rigidity Results for Elliptic PDEs with Uniform Limits: an Abstract Framework with Applications

被引:19
作者
Farina, Alberto [1 ]
Valdinoci, Enrico [2 ]
机构
[1] Univ Picardie Jules Verne, LAMFA CNRS UMR 6140, Fac Sci, Amiens, France
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
elliptic PDEs; fractional or nonlinear operators; symmetry results; ONE-DIMENSIONAL SYMMETRY; DIRICHLET-NEUMANN OPERATORS; GRAVITY-WAVES; WATER-WAVES; EQUATIONS; ANALYTICITY; MODEL;
D O I
10.1512/iumj.2011.60.4433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an abstract framework for a symmetry result arising in a conjecture of G.W. Gibbons and we apply it to the fractional Laplace operator, to the elliptic operators with constant coefficients, to the quasilinear operators, and to elliptic fully nonlinear operators with possible gradient dependence.
引用
收藏
页码:121 / 141
页数:21
相关论文
共 73 条
[1]   Phase transition with the line-tension effect [J].
Alberti, G ;
Bouchitte, G ;
Seppecher, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 144 (01) :1-46
[2]   A nonlocal anisotropic model for phase transitions - Part I: The Optimal Profile Problem [J].
Alberti, G ;
Bellettini, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :527-560
[3]  
[Anonymous], 2001, ADV MATH SCI APPL
[4]  
[Anonymous], SEMILINEAR EQUATIONS
[5]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[6]  
[Anonymous], FREE BOUNDARIES FRAC
[7]  
[Anonymous], 2005, THESIS U TEXAS AUSTI
[8]  
[Anonymous], 1979, Comm. Partial Differential Equations, DOI 10.1080/03605307908820119
[9]  
[Anonymous], 1995, Fully nonlinear elliptic equations
[10]  
Barlow MT, 2000, COMMUN PUR APPL MATH, V53, P1007, DOI 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.0.CO