On-Line Estimation of SPSG Parameters using Discrete Kalman Filters

被引:0
作者
Larakeb, M. [1 ]
Bentounsi, A. [1 ]
Djeghloud, H. [1 ]
Rachid, A. [2 ]
机构
[1] Technol Sci Fac, Lab Elect Engn Constantine, Constantine, Algeria
[2] Technol Sci Fac, MoDERNa Lab, Constantine, Algeria
来源
2016 IEEE 16TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (EEEIC) | 2016年
关键词
SPSG; Kalman filter; disrete parametric estimation; bias; comparisons; OBSERVER;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Diverse estimators are available for on-line parametric identification; among them the discrete Kalman filter (DKF) is the most popular. It can be used in its traditional form (DTKF) for linear systems or in its extended form (DEKF) when the system is nonlinear. Another interesting application of the discrete Kalman filter is when it is biased (DBKF). The consideration of the bias makes it possible to reduce the mean squared error (MSE) between measured and estimated values of the system state variable. Therefore the normalized MSE (NMSE) can be diminished as well. Likewise, standard deviation (STD) between real and estimated values of the parameter can be limited in the tolerable percentage. All these situations are discussed in this paper where the system under study is a salient-pole synchronous generator (SPSG). MATLAB codes and Simulink models are implemented to validate the different DKFs. Finally comparative study between continuous and discrete KFs is provided and which reveals the benefit of the DKF.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On-Line Parameters Estimation of Low Scale SPSG Using Discrete Kalman Filters
    Larakeb, M.
    Bentounsi, A.
    Djeghloud, H.
    JOURNAL OF ELECTRICAL SYSTEMS, 2016, 12 (04) : 770 - 785
  • [2] Biased Kalman Filter Applied for On-Line Estimation of SPSG Parameters
    Larakeb, M.
    Bentounsi, A.
    Djeghloud, H.
    2016 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2016, : 60 - 66
  • [3] Parameter estimation using Kalman filters with constraints
    Walker, David M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (04): : 1067 - 1078
  • [4] Electric Load Estimation using Kalman and Lainiotis Filters
    Assimakis, Nicholas
    Manasis, Christos
    Ktena, Aphrodite
    2019 8TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2019, : 742 - 745
  • [5] On-line sensor modeling using a neural Kalman filter
    Stubberud, Stephen C.
    Kramer, Kathleen A.
    Geremia, J. Antonio
    2006 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-5, 2006, : 969 - +
  • [6] Using sequential Kalman filters for state estimation of nonlinear systems
    Mohammadi, S.
    Mohammadi, A.
    Keivani, H.
    Askari, M. R.
    Kavehnia, F.
    Ghanbarian, M. M.
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 258 - +
  • [7] Spectral abundance fraction estimation of materials using Kalman filters
    Wang, S
    Chang, CI
    Jensen, JL
    Jensen, JO
    CHEMICAL AND BIOLOGICAL STANDOFF DETECTION II, 2004, 5584 : 210 - 220
  • [8] On-line estimation of lithium-ion battery impedance parameters using a novel varied-parameters approach
    Waag, Wladislaw
    Fleischer, Christian
    Sauer, Dirk Uwe
    JOURNAL OF POWER SOURCES, 2013, 237 : 260 - 269
  • [9] Data fusion based multi-rate Kalman filtering with unknown input for on-line estimation of dynamic displacements
    Zheng, Zhupeng
    Qiu, Hao
    Wang, Zhichao
    Luo, Sujuan
    Lei, Ying
    MEASUREMENT, 2019, 131 : 211 - 218
  • [10] TOWED ARRAY SHAPE ESTIMATION USING KALMAN FILTERS - EXPERIMENTAL INVESTIGATIONS
    RILEY, JL
    GRAY, DA
    IEEE JOURNAL OF OCEANIC ENGINEERING, 1993, 18 (04) : 572 - 581