Constraints on Sterile Neutrino Models from Strong Gravitational Lensing, Milky Way Satellites, and the Lyman-α Forest

被引:26
作者
Zelko, Ioana A. [1 ]
Treu, Tommaso [1 ]
Abazajian, Kevork N. [2 ]
Gilman, Daniel [3 ]
Benson, Andrew J. [4 ]
Birrer, Simon [5 ,6 ,7 ]
Nierenberg, Anna M. [8 ]
Kusenko, Alexander [1 ,9 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, 475 Portola Plaza, Los Angeles, CA 90095 USA
[2] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[3] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada
[4] Carnegie Inst Sci, 813 Santa Barbara St, Pasadena, CA 91101 USA
[5] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[7] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[8] Univ Calif Merced, Dept Phys, 5200 North Lake Rd, Merced, CA 95343 USA
[9] Univ Tokyo, UTIAS, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan
基金
美国国家科学基金会; 日本学术振兴会;
关键词
DARK-MATTER; SUBSTRUCTURE; GALAXIES; !text type='PYTHON']PYTHON[!/text; MASS;
D O I
10.1103/PhysRevLett.129.191301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nature of dark matter is one of the most important unsolved questions in science. Some darkf matter candidates do not have sufficient nongravitational interactions to be probed in laboratory or accelerator experiments. It is thus important to develop astrophysical probes which can constrain or lead to a discovery of such candidates. We illustrate this using state-of-the-art measurements of strong gravitationally lensed quasars to constrain four of the most popular sterile neutrino models, and also report the constraints for other independent methods that are comparable in procedure. First, we derive effective relations to describe the correspondence between the mass of a thermal relic warm dark matter particle and the mass of sterile neutrinos produced via Higgs decay and grand unified theory (GUT)-scale scenarios, in terms of large-scale structure and galaxy formation astrophysical effects. Second, we show that sterile neutrinos produced through the Higgs decay mechanism are allowed only for mass >26 keV, and GUT-scale scenario >5.3 keV. Third, we show that the single sterile neutrino model produced through active neutrino oscillations is allowed for mass >92 keV, and the three sterile neutrino minimal standard model (nu MSM) for mass >16 keV. These are the most stringent experimental limits on these models.
引用
收藏
页数:7
相关论文
共 65 条
  • [1] Linear cosmological structure limits on warm dark matter
    Abazajian, K
    [J]. PHYSICAL REVIEW D, 2006, 73 (06):
  • [2] Abazajian K. N, 2012, LIGHT STERILE NEUTRI
  • [3] Hidden treasures: Sterile neutrinos as dark matter with miraculous abundance, structure formation for different production mechanisms, and a solution to the σ8 problem
    Abazajian, Kevork N.
    Kusenko, Alexander
    [J]. PHYSICAL REVIEW D, 2019, 100 (10)
  • [4] Sterile neutrinos in cosmology
    Abazajian, Kevork N.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2017, 711 : 1 - 28
  • [5] A White Paper on keV sterile neutrino Dark Matter
    Adhikari, R.
    Agostini, M.
    Ky, N. Anh
    Araki, T.
    Archidiacono, M.
    Bahr, M.
    Baur, J.
    Behrens, J.
    Bezrukov, F.
    Dev, P. S. Bhupal
    Borah, D.
    Boyarsky, A.
    de Gouvea, A.
    Pires, C. A. de S.
    de Vega, H. J.
    Dias, A. G.
    Di Bari, P.
    Djurcic, Z.
    Dolde, K.
    Dorrer, H.
    Durero, M.
    Dragoun, O.
    Drewes, M.
    Drexlin, G.
    Duellmann, Ch. E.
    Eberhardt, K.
    Eliseev, S.
    Enss, C.
    Evans, N. W.
    Faessler, A.
    Filianin, P.
    Fischer, V.
    Fleischmann, A.
    Formaggio, J. A.
    Franse, J.
    Fraenkle, F. M.
    Frenk, C. S.
    Fuller, G.
    Gastaldo, L.
    Garzilli, A.
    Giunti, C.
    Glueck, F.
    Goodman, M. C.
    Gonzalez-Garcia, M. C.
    Gorbunov, D.
    Hamann, J.
    Hannen, V.
    Hannestad, S.
    Hansen, S. H.
    Hassel, C.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (01):
  • [6] Planck 2018 results: VIII. Gravitational lensing
    Aghanim, N.
    Akrami, Y.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Challinor, A.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Crill, B. P.
    Cuttaia, F.
    de Bernardis, P.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fantaye, Y.
    Fernandez-Cobos, R.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 641 (641)
  • [7] Sterile neutrino production at small mixing in the early universe
    Alonso-Alvarez, Gonzalo
    Cline, James M.
    [J]. PHYSICS LETTERS B, 2022, 833
  • [8] [Anonymous], US, DOI [10.1103/PhysRevLett.129.191301, DOI 10.1103/PHYSREVLETT.129.191301]
  • [9] [Anonymous], 2015, Dark Matter in the Universe, 2053-2571
  • [10] The vMSM, dark matter and baryon asymmetry of the universe
    Asaka, T
    Shaposhnikov, M
    [J]. PHYSICS LETTERS B, 2005, 620 (1-2) : 17 - 26