A comparative study of density functional and density functional tight binding calculations of defects in graphene

被引:57
作者
Zobelli, Alberto [1 ]
Ivanovskaya, Viktoria [2 ]
Wagner, Philipp [2 ]
Suarez-Martinez, Irene [3 ]
Yaya, Abu [2 ]
Ewels, Chris P. [2 ]
机构
[1] Univ Paris 11, CNRS, Phys Solides Lab, UMR 8502, F-91405 Orsay, France
[2] Univ Nantes, Inst Mat Jean Rouxel IMN, CNRS, UMR 6502, F-44322 Nantes, France
[3] Curtin Univ Technol, Nanochem Res Inst, Perth, WA 6845, Australia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2012年 / 249卷 / 02期
关键词
defects; DFTB; edges; graphene; irradiation; MOLECULAR-DYNAMICS SIMULATIONS; WALLED CARBON NANOTUBE; ELECTRONIC-PROPERTIES; GRAPHITE; QUANTUM; ENERGY; ADSORPTION; MIGRATION; CLUSTER; GROWTH;
D O I
10.1002/pssb.201100630
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The density functional tight binding approach (DFTB) is well adapted for the study of point and line defects in graphene based systems. After briefly reviewing the use of DFTB in this area, we present a comparative study of defect structures, energies, and dynamics between DFTB results obtained using the dftb-code, and density functional results using the localized Gaussian orbital code, AIMPRO. DFTB accurately reproduces structures and energies for a range of point defect structures such as vacancies and Stone-Wales defects in graphene, as well as various unfunctionalized and hydroxylated graphene sheet edges. Migration barriers for the vacancy and Stone-Wales defect formation barriers are accurately reproduced using a nudged elastic band approach. Finally we explore the potential for dynamic defect simulations using DFTB, taking as an example electron irradiation damage in graphene.
引用
收藏
页码:276 / 282
页数:7
相关论文
共 46 条
[1]   Irradiation effects in carbon nanostructures [J].
Banhart, F .
REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (08) :1181-1221
[2]   Density functional calculations on the intricacies of Moire patterns on graphite [J].
Campanera, J. M. ;
Savini, G. ;
Suarez-Martinez, I. ;
Heggie, M. I. .
PHYSICAL REVIEW B, 2007, 75 (23)
[3]   Controlling Edge Morphology in Graphene Layers Using Electron Irradiation: From Sharp Atomic Edges to Coalesced Layers Forming Loops [J].
Cruz-Silva, E. ;
Botello-Mendez, A. R. ;
Barnett, Z. M. ;
Jia, X. ;
Dresselhaus, M. S. ;
Terrones, H. ;
Terrones, M. ;
Sumpter, B. G. ;
Meunier, V. .
PHYSICAL REVIEW LETTERS, 2010, 105 (04)
[4]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[5]   Meta-code for systematic analysis of chemical addition (SACHA):: Application to fluorination of C70 and carbon nanostructure growth [J].
Ewels, Christopher P. ;
Van Lier, Gregory ;
Geerlings, Paul ;
Charlier, Jean-Christophe .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2007, 47 (06) :2208-2215
[6]   Molecular dynamics study of the reaction C3+H+3 [J].
Fischer, G ;
Barthel, R ;
Seifert, G .
EUROPEAN PHYSICAL JOURNAL D, 2005, 35 (03) :479-481
[7]   DFTB3: Extension of the Self-Consistent-Charge Density-Functional Tight-Binding Method (SCC-DFTB) [J].
Gaus, Michael ;
Cui, Qiang ;
Elstner, Marcus .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (04) :931-948
[8]   Relativistic separable dual-space Gaussian pseudopotentials from H to Rn [J].
Hartwigsen, C ;
Goedecker, S ;
Hutter, J .
PHYSICAL REVIEW B, 1998, 58 (07) :3641-3662
[9]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[10]   Formation of fullerene molecules from carbon nanotubes: A quantum chemical molecular dynamics study [J].
Irle, S ;
Zheng, GS ;
Elstner, M ;
Morokuma, K .
NANO LETTERS, 2003, 3 (04) :465-470