Numerical computations with H(div)-finite elements for the Brinkman problem

被引:31
|
作者
Konno, Juho [1 ]
Stenberg, Rolf [1 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, Aalto Espoo 00076, Finland
关键词
Brinkman problem; H(div)-finite elements; Darcy and Stokes models; 2ND-ORDER ELLIPTIC PROBLEMS; MIXED FINITE-ELEMENTS; DISCONTINUOUS GALERKIN; BOUNDARY-CONDITIONS; STOKES PROBLEM; POROUS-MEDIA; EQUATIONS; FLOWS; HOMOGENIZATION; MODELS;
D O I
10.1007/s10596-011-9259-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The H(div)-conforming approach for the Brinkman equation is studied numerically, verifying the theoretical a priori and a posteriori analysis in Konno and Stenberg (2010; Math Models Methods Appl Sci, 2011). Furthermore, the results are extended to cover a non-constant permeability. A hybridization technique for the problem is presented, complete with a convergence analysis and numerical verification. Finally, the numerical convergence studies are complemented with numerical examples of applications to domain decomposition and adaptive mesh refinement.
引用
收藏
页码:139 / 158
页数:20
相关论文
共 50 条
  • [1] Numerical computations with H(div)-finite elements for the Brinkman problem
    Juho Könnö
    Rolf Stenberg
    Computational Geosciences, 2012, 16 : 139 - 158
  • [2] H(div)-CONFORMING FINITE ELEMENTS FOR THE BRINKMAN PROBLEM
    Konno, Juho
    Stenberg, Rolf
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11): : 2227 - 2248
  • [3] Computations with finite element methods for the Brinkman problem
    Hannukainen, Antti
    Juntunen, Mika
    Stenberg, Rolf
    COMPUTATIONAL GEOSCIENCES, 2011, 15 (01) : 155 - 166
  • [4] Computations with finite element methods for the Brinkman problem
    Antti Hannukainen
    Mika Juntunen
    Rolf Stenberg
    Computational Geosciences, 2011, 15 : 155 - 166
  • [5] Quadrilateral H(div) finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) : 2429 - 2451
  • [6] HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS
    Falk, Richard S.
    Gatto, Paolo
    Monk, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (01): : 115 - 143
  • [7] Nonconforming vector finite elements for H(curl; Ω) ∧ H(div; Ω)
    Mirebeau, Jean-Marie
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 369 - 373
  • [8] A UNIFORMLY ROBUST H(DIV) WEAK GALERKIN FINITE ELEMENT METHODS FOR BRINKMAN PROBLEMS
    Mu, Lin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1422 - 1439
  • [9] EFFICIENT ASSEMBLY OF H(div) AND H(curl) CONFORMING FINITE ELEMENTS
    Rognes, Marie E.
    Kirby, Robert C.
    Logg, Anders
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06): : 4130 - 4151
  • [10] Partially Discontinuous Nodal Finite Elements for H(curl) and H(div)
    Hu, Jun
    Hu, Kaibo
    Zhang, Qian
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (03) : 613 - 629