Global Mittag-Leffler stability for a coupled system of fractional-order differential equations on network with feedback controls

被引:24
作者
Li, Hong-Li [1 ]
Hu, Cheng [1 ]
Jiang, Yao-Lin [1 ,2 ]
Zhang, Long [1 ]
Teng, Zhidong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Math, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Global Mittag-Leffler stability; Fractional-order differential equations; Coupled system on network; Feedback controls; Graph theory; NEURAL-NETWORKS; SYNCHRONIZATION; DELAYS; MODEL;
D O I
10.1016/j.neucom.2016.05.080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates a coupled system of fractional-order differential equations on network with feedback controls (CSFDENFCs). By using the contraction mapping principle, Lyapunov method, graph theoretic approach and inequality techniques, some sufficient conditions are derived to ensure the existence, uniqueness and global Mittag-Leffier stability of the equilibrium point of CSFDENFCs. Finally, numerical simulations are presented to demonstrate the validity and feasibility of the theoretical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:233 / 241
页数:9
相关论文
共 44 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]  
Aizerman M. A., 1964, Absolute Stability of Regulator Systems
[3]  
[Anonymous], 2006, THEORY APPL FRACTION
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
Bishop CM, 1995, Neural Networks for Pattern Recognition
[6]   Synchronization in an array of linearly stochastically coupled networks with time delays [J].
Cao, Jinde ;
Wang, Zidong ;
Sun, Yonghui .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 385 (02) :718-728
[7]   Stability analysis for coupled systems with time delay on networks [J].
Chen, Hao ;
Sun, Jitao .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (03) :528-534
[8]   Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks [J].
Chen, Jiejie ;
Zeng, Zhigang ;
Jiang, Ping .
NEURAL NETWORKS, 2014, 51 :1-8
[9]   Dynamic analysis of a class of fractional-order neural networks with delay [J].
Chen, Liping ;
Chai, Yi ;
Wu, Ranchao ;
Ma, Tiedong ;
Zhai, Houzhen .
NEUROCOMPUTING, 2013, 111 :190-194
[10]   Global asymptotical stability of a Logistic model with feedback control [J].
Fan, Yong-Hong ;
Wang, Lin-Lin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) :2686-2697