Conformal Hamiltonian systems

被引:69
作者
McLachlan, R [1 ]
Perlmutter, M [1 ]
机构
[1] Massey Univ, IFS, Palmerston North 5301, New Zealand
关键词
Hamiltonian systems; conformal Poisson structure;
D O I
10.1016/S0393-0440(01)00020-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Vector fields whose flow preserves a symplectic form up to a constant, such as simple mechanical systems with friction, are called "conformal". We develop a reduction theory for symmetric conformal Hamiltonian systems, analogous to symplectic reduction theory. This entire theory extends naturally to Poisson systems: given a symmetric conformal Poisson vector field, we show that it induces two reduced conformal Poisson vector fields, again analogous to the dual pair construction for symplectic manifolds. Conformal Poisson systems form an interesting infinite-dimensional Lie algebra of foliate vector fields. Manifolds supporting such conformal vector fields include cotangent bundles, Lie-Poisson manifolds, and their natural quotients. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:276 / 300
页数:25
相关论文
共 24 条
[1]  
ANZAI H, 1951, OSAKA MATH J, V3, P83
[2]  
Banyaga A, 1997, MATH ITS APPL, V400
[3]   The Euler-Poincare equations and double bracket dissipation [J].
Bloch, A ;
Krishnaprasad, PS ;
Marsden, JE ;
Ratiu, TS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :1-42
[4]   Stable ergodicity of skew products [J].
Burns, K ;
Wilkinson, A .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1999, 32 (06) :859-889
[5]  
CARTAN E, 1984, OEUVRES COMPLETE ELI
[6]  
Cartan E., 1909, ANN SCI ECOLE NORM S, V26, P93
[7]   SYMMETRY PROPERTY OF THE LYAPUNOV SPECTRA OF A CLASS OF DISSIPATIVE DYNAMICAL-SYSTEMS WITH VISCOUS DAMPING [J].
DRESSLER, U .
PHYSICAL REVIEW A, 1988, 38 (04) :2103-2109
[8]   CLASSIFICATION OF COMPLEX PRIMITIVE INFINITE PSEUDOGROUPS [J].
GUILLEMI.V ;
QUILLEN, D ;
STERNBER.S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1966, 55 (04) :687-&
[9]  
Jonsson M, 1999, MATH ANN, V314, P403, DOI 10.1007/s002080050301
[10]  
Kobayashi S., 1972, TRANSFORMATION GROUP