Novel Lithium-Ion Battery State-of-Health Estimation Method Using a Genetic Programming Model

被引:18
|
作者
Yao, Hang [1 ]
Jia, Xiang [1 ]
Zhao, Qian [2 ]
Cheng, Zhi-Jun [1 ]
Guo, Bo [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Informat & Commun, Xian 710106, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Estimation; Genetic programming; Feature extraction; Degradation; Monitoring; Li-ion battery; state-of-health (SOH); prognostic and health management; USEFUL LIFE PREDICTION; ELECTRIC VEHICLE-BATTERIES; EXTENDED KALMAN FILTER; CAPACITY ESTIMATION; CHARGE ESTIMATION; PARTICLE FILTER; ONLINE STATE; PROGNOSTICS; DIAGNOSIS;
D O I
10.1109/ACCESS.2020.2995899
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State-of-health (SOH) is a health index (HI) that directly reflects the performance degradation of lithium-ion batteries in engineering, but the SOH of Li-ion batteries is difficult to measure directly. In this paper, a novel data-driven method is proposed to estimate the SOH of Li-ion batteries accurately and explore the relationship-like mechanism. First, the features of the battery should be extracted from the performance data. Next, by using the evolution of genetic programming to reflect the change in SOH, a mathematical model describing the relationship between the features and the SOH is constructed based on the data. Additionally, it has strong randomness in the formula model, which can cover most of the structural space of SOH and features. An illustrative example is presented to evaluate the SOH of the two batches of Li-ion batteries from the NASA database using the proposed method. One batch of batteries was used for testing and comparison, and another was chosen to verify the test results. Through experimental comparison and verification, it is demonstrated that the proposed method is rather useful and accurate.
引用
收藏
页码:95333 / 95344
页数:12
相关论文
共 50 条
  • [21] Critical summary and perspectives on state-of-health of lithium-ion battery
    Yang, Bo
    Qian, Yucun
    Li, Qiang
    Chen, Qian
    Wu, Jiyang
    Luo, Enbo
    Xie, Rui
    Zheng, Ruyi
    Yan, Yunfeng
    Su, Shi
    Wang, Jingbo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 190
  • [22] An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge
    Huang, Huanyang
    Meng, Jinhao
    Wang, Yuhong
    Cai, Lei
    Peng, Jichang
    Wu, Ji
    Xiao, Qian
    Liu, Tianqi
    Teodorescu, Remus
    AUTOMOTIVE INNOVATION, 2022, 5 (02) : 134 - 145
  • [23] Online State-of-Health Estimation Method for Lithium-Ion Battery Based on CEEMDAN for Feature Analysis and RBF Neural Network
    Mao, Ling
    Hu, Huizhong
    Chen, Jiajun
    Zhao, Jinbin
    Qu, Keqing
    Jiang, Lei
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2023, 11 (01) : 187 - 200
  • [24] State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter
    Bi, Jun
    Zhang, Ting
    Yu, Haiyang
    Kang, Yanqiong
    APPLIED ENERGY, 2016, 182 : 558 - 568
  • [25] A novel deep learning framework for state of health estimation of lithium-ion battery
    Fan, Yaxiang
    Xiao, Fei
    Li, Chaoran
    Yang, Guorun
    Tang, Xin
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [26] Lithium-Ion Battery State-of-Health Estimation Method Using Isobaric Energy Analysis and PSO-LSTM
    Zhao, Shaishai
    Luo, Laijin
    Jiang, Shanhe
    Zhang, Chaolong
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2023, 2023
  • [27] A Review of Lithium-Ion Battery State of Health Estimation and Prediction Methods
    Yao, Lei
    Xu, Shiming
    Tang, Aihua
    Zhou, Fang
    Hou, Junjian
    Xiao, Yanqiu
    Fu, Zhijun
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (03):
  • [28] HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery
    Gao, Mingyu
    Bao, Zhengyi
    Zhu, Chunxiang
    Jiang, Jiahao
    He, Zhiwei
    Dong, Zhekang
    Song, Yining
    ENERGY REPORTS, 2023, 9 : 2577 - 2590
  • [29] An Improved LSTNet Approach for State-of-Health Estimation of Automotive Lithium-Ion Battery
    Ping, Fan
    Miao, Xiaodong
    Yu, Hu
    Xun, Zhiwen
    ELECTRONICS, 2023, 12 (12)
  • [30] Interactive fusion of local and global degradation representations for rapid estimation of lithium-ion battery state-of-health
    Sun, Ziqiang
    Fan, Guodong
    Liu, Yisheng
    Zhou, Boru
    Wang, Yansong
    Chen, Shun
    Zhang, Xi
    JOURNAL OF ENERGY STORAGE, 2024, 90