Novel Lithium-Ion Battery State-of-Health Estimation Method Using a Genetic Programming Model

被引:18
|
作者
Yao, Hang [1 ]
Jia, Xiang [1 ]
Zhao, Qian [2 ]
Cheng, Zhi-Jun [1 ]
Guo, Bo [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Informat & Commun, Xian 710106, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Estimation; Genetic programming; Feature extraction; Degradation; Monitoring; Li-ion battery; state-of-health (SOH); prognostic and health management; USEFUL LIFE PREDICTION; ELECTRIC VEHICLE-BATTERIES; EXTENDED KALMAN FILTER; CAPACITY ESTIMATION; CHARGE ESTIMATION; PARTICLE FILTER; ONLINE STATE; PROGNOSTICS; DIAGNOSIS;
D O I
10.1109/ACCESS.2020.2995899
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State-of-health (SOH) is a health index (HI) that directly reflects the performance degradation of lithium-ion batteries in engineering, but the SOH of Li-ion batteries is difficult to measure directly. In this paper, a novel data-driven method is proposed to estimate the SOH of Li-ion batteries accurately and explore the relationship-like mechanism. First, the features of the battery should be extracted from the performance data. Next, by using the evolution of genetic programming to reflect the change in SOH, a mathematical model describing the relationship between the features and the SOH is constructed based on the data. Additionally, it has strong randomness in the formula model, which can cover most of the structural space of SOH and features. An illustrative example is presented to evaluate the SOH of the two batches of Li-ion batteries from the NASA database using the proposed method. One batch of batteries was used for testing and comparison, and another was chosen to verify the test results. Through experimental comparison and verification, it is demonstrated that the proposed method is rather useful and accurate.
引用
收藏
页码:95333 / 95344
页数:12
相关论文
共 50 条
  • [1] A Novel Model-Based Voltage Construction Method for Robust State-of-Health Estimation of Lithium-Ion Batteries
    Bian, Xiaolei
    Wei, Zhongbao
    He, Jiangtao
    Yan, Fengjun
    Liu, Longcheng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (12) : 12173 - 12184
  • [2] State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
    Ye, Zhuang
    Yu, Jianbo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 3528 - 3543
  • [3] A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model
    Gu, Xinyu
    See, K. W.
    Li, Penghua
    Shan, Kangheng
    Wang, Yunpeng
    Zhao, Liang
    Lim, Kai Chin
    Zhang, Neng
    ENERGY, 2023, 262
  • [4] State-of-Health Estimation of Lithium-Ion Battery Based on Interval Capacity for Electric Buses
    Ye, Baolin
    Zhang, Zhaosheng
    Wang, Shuai
    Ma, Yucheng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 6096 - 6106
  • [5] State-of-health estimation of lithium-ion battery based on fractional impedance model and interval capacity
    Yang, Qingxia
    Xu, Jun
    Li, Xiuqing
    Xu, Dan
    Cao, Binggang
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 119
  • [6] Lithium-Ion Battery State-of-Health Estimation Using the Incremental Capacity Analysis Technique
    Stroe, Daniel-Ioan
    Schaltz, Erik
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (01) : 678 - 685
  • [7] A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
    Yang, Duo
    Zhang, Xu
    Pan, Rui
    Wang, Yujie
    Chen, Zonghai
    JOURNAL OF POWER SOURCES, 2018, 384 : 387 - 395
  • [8] A review of state-of-health estimation for lithium-ion battery packs
    Li, Qingwei
    Song, Renjie
    Wei, Yongqiang
    JOURNAL OF ENERGY STORAGE, 2025, 118
  • [9] A novel data-model fusion state-of-health estimation approach for lithium-ion batteries
    Ma, Zeyu
    Yang, Ruixin
    Wang, Zhenpo
    APPLIED ENERGY, 2019, 237 : 836 - 847
  • [10] State-of-Health Estimation of Lithium-Ion Batteries Using Incremental Capacity Analysis Based on Voltage-Capacity Model
    He, Jiangtao
    Wei, Zhongbao
    Bian, Xiaolei
    Yan, Fengjun
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2020, 6 (02) : 417 - 426